共查询到18条相似文献,搜索用时 71 毫秒
1.
探索一种基于聚类来识别异常的方法,这个方法不需要手动标示的训练数据集却可以探测到很多不同类型的入侵行为.实验结果表明该方法是可行的和有效的,使用它来进行异常检测可以得到探测率和误报率的一个平衡,从而为异常检测问题提供一个较好的解决办法. 相似文献
2.
一种新的聚类算法在入侵检测中的应用研究 总被引:1,自引:0,他引:1
异常检测是入侵检测中防范新型攻击的基本手段,本文分析了当前技术中一些问题,提出了一种新的用于入侵检测的聚类算法,该算法通过动态更新聚类中心和类内最大距离实现,收敛速度快,并进行了模拟测试,取得了较好的效果。 相似文献
3.
4.
目前的入侵检测系统存在着在先验知识较少的情况下推广能力差的问题。在入侵检测系统中应用聚类算法,使得入侵检测系统在先验知识少的条件下仍具有良好的推广能力。首先介绍入侵检测研究的发展概况和聚类算法;接着提出了基于聚类算法的入侵检测方法;然后以KDD99这类常用的入侵检测数据为例,讨论了该方法的工作过程;最后将计算机仿真结果进行了分析。通过实验和比较发现,基于聚类学习算法的入侵检测系统能够比较有效地检测真实网络数据中的未知入侵行为。 相似文献
5.
6.
由于Adhoc网络的独特网络特性,其安全性特别脆弱。在分析了Adhoc网络安全性的基础上,提出了一种聚类算法和人工免疫系统相结合来进行入侵检测的方法。该算法是一种无监督异常检测算法,它具有可扩展性、对输入数据集的顺序不敏感等特性,有处理不同类型数据和噪声数据的能力。实验表明,该算法可以改进Adhoc网络入侵检测的检测率和误检率。 相似文献
7.
李涵 《微电子学与计算机》2010,27(8)
入侵检测系统是一种积极主动的安全防护技术,它是信息安全保护体系结构中的一个重要组成部分.异常检测是入侵检测的一种方法,因其能够检测出未知的攻击而受到广泛的研究.以基于数据挖掘的异常检测技术为研究内容,以提高异常检测的检测率、降低误报率为目标,以聚类分析为主线,提出了一种改进的聚类检测算法和模型,并进行仿真实验.算法首先去除了数据集中明显的噪声和孤立点,通过分裂聚类、合并聚类以及利用超球体的密度半径确定k个初始聚类中心,以减小初始k值的选取对聚类结果造成的影响,提高异常检测效率,并以此构造入侵检测模型.利用KDD CUP 1999数据集对模型进行实验测试,并对改进算法的效果进行了对比和分析.实验证明,新的检测系统具有良好的性能. 相似文献
8.
为了进一步提高网络入侵检测技术的检测率,降低误报率和漏报率.针对普通聚类算法存在的聚类结果对随机选取初始聚类中心敏感、分类结果不稳定,从而造成的检测率低、漏报和误报率高的特点.提出一种基于动态聚类算法的网络入侵检测模型,实验结果表明通过在K-均值聚类算法的基础上增加动态迭代调整聚类中心,使聚类结果更稳定更准确.与K-均值聚类等算法相比提高了网络入侵检测的性能,从而表明该算法的可行性,有效性. 相似文献
9.
现有的异常轨迹检测算法往往侧重于检测轨迹的空域异常,忽略了对轨迹时域异常的检测,并且检测精确度不高,针对此类问题,提出了基于增强聚类的异常轨迹检测算法。首先,采用基于速度的最小描述长度(VMDL)准则把轨迹简化成有序线段;然后,使用改进的线段间的距离定义,基于DBSCAN算法把线段分为不同的类,以建模局部正常运动模式;最后,采用先检测空间异常性再检测时间异常性的二级检测算法,检测时空异常轨迹点。在多个测试集上的实验结果表明:该算法可以检测位置、角度、速度等三种时空异常轨迹点,相对于其他算法,明显提高了异常轨迹检测的精确度。 相似文献
10.
K-均值聚类对初始聚类中心的选取较敏感,容易陷入局部最优.将改进的遗传算法与K-均值聚类相结合,以优化聚类中心.在种群进化过程中,父代个体均从种群中适应度高的个体中选择,同时,根据个体适应度动态调节交叉概率和变异概率,避免早熟现象.文中采用改进的遗传算法,对学院网站服务器上的Web日志进行用户和页面聚类,达到了很好的聚类效果. 相似文献
11.
12.
针对聚类的入侵检测算法误报率高的问题,提出一种主动学习半监督聚类入侵检测算法.在半监督聚类过程中应用主动学习策略,主动查询网络中未标记数据与标记数据的约束关系,利用少量的标记数据生成正确的样本模型来指导大量的未标记数据聚类,对聚类后仍未能标记的数据采用改进的K-近邻法进一步确定未标记数据的类型,实现对新攻击类型的检测.实验结果表明了算法的可行性及有效性. 相似文献
13.
针对已有的无线入侵检测方法训练时间长和检测精度低的问题,提出一种基于调整后的BIRCH——MBIRCH算法的无线Mesh网络入侵检测算法。该算法首先一次性扫描数据集获得CF(聚类特征),然后自底向上地计算不同层次的聚类有效指标,主要是考虑数据集的几何结构,即通过度量簇内数据点分布的紧凑度以及簇间的相似度,并保持二者之间的平衡,根据此指标确定CF树的簇结点,直到得到最佳聚类结果,将最佳聚类结果作为训练样本指定判别函数,对网络数据定位。实验结果表明,该算法不仅明显减少样本训练时间,同时提高了算法检测精度,符合无线Mesh网络的入侵检测需要。 相似文献
14.
15.
遗传模糊C均值算法在入侵检测中的应用 总被引:2,自引:0,他引:2
针对模糊C均值算法的缺点,论文提出了一种改进模糊C均值算法,并将遗传算法引入到改进模糊C均值算法中,以克服所求解是局部最优解的不足。通过实验仿真,验证了这种混合算法的有效性和可行性。 相似文献
16.
17.
基于克隆选择聚类的入侵检测 总被引:1,自引:1,他引:1
白琳 《微电子学与计算机》2007,24(3):135-137,141
提出基于克隆选择的模糊聚类算法,将该聚类算法用于网络入侵检测。针对入侵数据的混合属性改进距离测度的计算方法,实现了对大规模混合属性原始数据的异常检测,并能有效检测到未知攻击。在KDDCUP99数据集中进行了对比仿真实验,实验结果表明算法对已知攻击和未知攻击的检测率以及算法的误誊率都是理想的。 相似文献
18.
赵振辉 《微电子学与计算机》2013,(3)
为了解决现有的入侵检测系统响应网络环境慢、需要较多人工干预的局限,采用智能体技术和聚类分析设计一种新的网络入侵检测方法.使用智能体技术实现入侵检测系统的分布式设计,利用分层的控制智能体实现入侵检测系统的自主控制,同时使用基于模糊 C 均值算法的数据挖掘技术对网络数据进行检测分析,并利用加权算法对模糊 C 均值算法进行改进,提高系统的检测能力.结果表明,该系统能够减少人工干预,对网络环境响应较快,入侵检测性能也得到了提高. 相似文献