首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
设计了一种宽频率锁定范围、倍频数可编程的延迟锁相环。它引入了条件振荡控制电路,使该电路在保持DLL一阶系统和低抖动性能优势的基础上吸收了PLL倍频数可编程的优点;同时,该电路结合了设置延迟初始值和采用新型鉴相器两种宽频技术,具有宽频率工作范围。该延迟锁相环用SMIC 0.18μm 1.8 V CMOS工艺实现,锁定范围为1.56~100 MHz,可供选择的倍频数为1~16,输出频率范围从20 MHz到100 MHz。在输入最小频率、最大倍频数下,仿真的功耗约为9 mW,抖动约为92 ps。  相似文献   

2.
延时锁相环(DLL)是一种基于数字电路实现的时钟管理技术。DLL可用以消除时钟偏斜,对输入时钟进行分频、倍频、移相等操作。文中介绍了FPGA芯片内DLL的结构和设计方案,在其基础上提出可实现快速锁定的延时锁相环OSDLL设计。在SMIC0.25μm工艺下,设计完成OSDLL测试芯片,其工作频率在20-200MHz,锁定时间相比传统架构有大幅降低。  相似文献   

3.
介绍了一种可用于DLL的控制模块,设计了控制模块的具体电路,并着重优化了控制算法,使其锁定速度快、支持的输入时钟信号频率范围大、延迟信号相位抖动小.采用SMIC 0.18 μm CMOS工艺库进行设计和实现.经仿真测试,电路工作范围可达到10 MHz~1 GHz,最大锁定周期为32个输入时钟周期,最大相位抖动小于28 ps.整个控制模块芯片面积为300 μm×350 μm.  相似文献   

4.
本文采用双延迟线和防错锁控制结构,结合对电荷泵等关键模块版图对称性的匹配控制,设计了一种针对(Time-to-Digital Converter,TDC)应用的宽动态锁定范围、低静态相位误差延迟锁相环(Delay-Locked Loop,DLL)电路.基于TSMC 0.35μm CMOS工艺,完成了电路的仿真和流片验证.测试结果表明,DLL频率锁定范围为40MHz-200MHz;静态相位误差161ps@125MHz;在无噪声输入的理想时钟驱动下,200MHz频率点下的峰-峰值抖动最大为85.3ps,均方根抖动最大为9.44ps,可满足亚纳秒级时间分辨的TDC应用需求.  相似文献   

5.
多相时钟是集成电路的关键模块之一,在模拟数字转换器(Analog-to-Digital Converter,ADC),或是时间数字转换器(Time-to-Digital Converter,TDC)等电路中有大量的应用.多相时钟通常由延迟锁相环(Delay-Locked Loop,DLL)与锁相环(Phase-Locked Loop,PLL)产生.然而传统DLL无法倍频,PLL会有抖动累积等问题.此外,DLL与PLL的功耗通常较大.针对这些问题,本文提出了一种低功耗防错锁倍频延迟锁相环(Multiplying Delay-Locked Loop,MDLL).该设计采用一种低功耗的电荷泵结构,以及能切换为压控振荡器的压控延迟线,使电路功能在DLL与PLL之间切换,在倍频的同时能够周期地消除抖动累积.同时加入了防错锁电路,以避免MDLL锁定在错误的频率.基于HHGrace 0.11μm COMS工艺进行了流片验证,芯片面积约为0.03 mm 2.测试结果表明,此电路能够将输入参考时钟倍频32倍输出,输出时钟频率范围为54.4 MHz-92.8 MHz,电路功耗为216μW–312μW.在输出时钟频率为80 MHz的情况下,均方根抖动为116.3ps(0.93%).  相似文献   

6.
采用0.5 μm CMOS工艺,设计了一种简易锁相式频率合成器。采用“类锁相环”结构,在传统锁相环频率合成器的基础上,去除了电荷泵和低通滤波器。利用鉴频鉴相器的输出结果作为开关信号,控制压控振荡器的工作状态,使压控振荡器的输出信号在第N个周期返回鉴频鉴相器后立即被关断,直到下一个参考时钟周期来临。分析了电路的结构和工作原理,并对每个模块进行了理论分析。该频率合成器能够快速地产生固定的时钟频率,具有结构简单、功耗低、锁定时间短等优点。仿真结果表明,输入参考时钟为4 MHz时,该频率合成器的输出频率为15.96 MHz,功耗为2.96 mW,锁定时间小于1 μs。  相似文献   

7.
基于110 nm CMOS工艺设计了一种应用于HDMI接收端电路的宽频带低抖动锁相环。采用一种改进型双环结构电荷泵,在25~250 MHz的宽输入频率范围内实现了快速锁定。通过高相噪性能的伪差分环形振荡器产生了调谐范围为125 MHz~1.25 GHz的时钟信号。仿真实验结果表明,该锁相环的锁定时间小于1.2μs,在振荡器工作频率为0.8 GHz时,其相位噪声为-100.0 dBc/Hz@1 MHz,输出时钟峰峰值抖动为4.49 ps。  相似文献   

8.
针对脉冲无线电超宽频(IR-UWB)接收系统,提出了一种低功耗频率合成器设计。合成器的设计以一个整数N分频II型四阶锁相环结构为基础,包括一个调谐范围为31%的7位压控振荡器,一组基于单相时钟逻辑的高速分频器。分频器能够合成八个由IEEE标准802.15.4a定义的频率。该集成频率合成器运用65 nm CMOS技术制造而成,面积为0.33 mm2,工作频率范围为7.5–10.6 GHz。测试结果显示,在1.2 V供电下,该合成器的3-dB闭环带宽为100 kHz,稳定时间为15 。测量相位噪声低于-103 dBc/Hz@1MHz,抵消频率为1 MHz。杂散信号功率低于低于-58 dBc。相比其他先进的合成器,提出合成器的工作电流为5.13 mA,功耗仅为6.23mW。  相似文献   

9.
一种基于频率-电压变换器的高精度时钟振荡器   总被引:1,自引:1,他引:0  
采用一种新的不需要参考时钟输入的频率锁定环路结构,设计了一种基于频率-电压变换器的频率可调高精度时钟振荡器.通过电路补偿,减少工艺和温度对频率的影响.系统输出时钟的频率范围为22.5360 MHz,最坏情况下的变化小于±4.5%.电路采用GSMC 0.13 μmCMoS 1P8M工艺的3.3 V器件实现,核心版图面积约为0.05 mm2.版图后仿真表明,在3.3 V电源电压和200 MHz输出频率下,时钟的抖动峰-峰值为25 ps,锁定时间为2 μs,功耗为5 mw.  相似文献   

10.
苟亮  应鲁曲  王欢 《通信技术》2008,41(1):1-3,27
跳频通信系统中频率合成器的频率转换速率直接影响到系统的抗干扰能力.文章对锁相环频率合成器的锁定时间进行了分析与仿真,介绍了各种途径频率转换快速锁定的解决方案,采用其中的基于DDS分数分频的锁相环频合器方案,实现了S波段宽带跳频频合器测试,结果表明:在频率间隔为500 MHz时,相位锁定时间为110 μs,且相噪低、频谱纯度高,可大大提升系统性能.  相似文献   

11.
一种实现自调谐频率综合器的算法和结构   总被引:1,自引:1,他引:0  
在集成的频率综合器中 ,工艺、温度和电源电压的变化使得频率综合器产生的中心频率和频率调谐范围与期望值发生偏移。文中指出了一种自调谐频率综合器的算法和结构 ,利用特殊结构的可编程压控振荡器和自调谐算法实现宽调谐范围的频率综合器 ,进而充分涵盖期望的输出频段。用 0 2 5 μmCMOS工艺设计了一个中心频率 2 2GHz,调谐范围为 338MHz的频率综合器 ,用于IEEE80 2 11b/g无线局域网系统的超外差收发机中 ,可以充分满足标准要求的 80MHz的调谐范围 ;给出了锁定某一目标频率时自调谐算法的具体工作过程 ,结果表明该算法和结构是正确的。  相似文献   

12.
毫米波频率综合器中的重要模块之一高速可编程多模分频器,它主要用于对VCO的输出信号进行分频从而获得稳定的本振信号,它的性能影响整个毫米波频率综合器性能。本文设计的一种高速、低功耗、分频比可变的分频器具有非常重要的意义[1]。根据26 GHz-41 GHz硅基锁相环频率综合器的系统指标,本文基于TSMC 45nm CMOS工艺,设计实现了一种高速可编程分频器。本文采用注入锁定结构分频结构实现高速预分频,该结构可以实现在0 d Bm的输入功率下实现25 GHz-48 GHz的分频范围、最低功耗为:2.6 m W。基于脉冲吞咽计数器的可编程分频器由8/9双模分频器和可编程脉冲吞咽计数器组成。其中8/9双模分频器由同步4/5分频器和异步二分频构成,工作频率范围10 GHz-27 GHz,最低输入幅度为:300 m V,最低功耗为:1.6 m V。可编程吞咽计数器采用改进型带置数功能的TSPC D触发器,该可编程分频器的最大工作范围:25 GHz;最小功耗为:363μW。本文设计的高速可编程多模分频器,可以实现32-2 062的分频比;当工作于28 GHz时,相位噪声小于-159 dBc/Hz。动态功耗为5.2 m W。  相似文献   

13.
频率合成是将一个高稳定度和高精度的基准频率经过四则运算,产生同样稳定度和准确度的任意频率的技术。文中采用可编程数字频率合成芯片MC145151-2,结合单片机技术对频率步进值和输出频率值进行选择和控制,实现频率设置的程控化,完成输出频率在90 MHz~110 MHz范围变化的高频频率合成器的设计。阐述了该高频频率合成器软、硬件设计过程和参数计算方法,并对其进行各指标测试,结果表明该频率合成器具有较低的相位噪声、很高的频率稳定度。  相似文献   

14.
本文提出了一个具有自调谐,自适应功能的1.9GHz的分数/整数锁相环频率综合器.该频率综合器采用模拟调谐和数字调谐相结合的技术来提高相位噪声性能.自适应环路被用来实现带宽自动调整,可以缩短环路的建立时间.通过打开或者关断 ΣΔ 调制器的输出来实现分数和整数分频两种工作模式,仅用一个可编程计数器实现吞脉冲分频器的功能.采用偏置滤波技术以及差分电感,在片压控振荡器具有很低的相位噪声;通过采用开关电容阵列,该压控振荡器可以工作在1.7GHz~2.1GHz的调谐范围.该频率综合器采用0.18 μ m,1.8V SMIC CMOS工艺实现.SpectreVerilog仿真表明:该频率综合器的环路带宽约为100kHz,在600kHz处的相位噪声优于-123dBc/Hz,具有小于15 μ s的锁定时间.  相似文献   

15.
本文采用130nmCMOS工艺成功实现了应用于无线通信的0.8 - 4.2 GHz单片全数字锁相环频率合成器。文章提出了一系列的新方法,即采用了高频率分辨率的双带DCO以覆盖系统所需的2.5 GHz至5 GHz带宽;一个溢出计数器可以防止“pulse-swallowing”现象,显著减少了环路锁定时间;提出的NTW-clamp数字模块可以有效防止循环控制字的溢出;修改后的可编程分频器避免了传统架构中失败的边界操作。测量结果表明,该频率合成器的输出频率范围是0.8-4.2 GHz,锁定时间在2.68GHz减少了84%,最好的带内和带外相位噪声性能已达到-100 dBc/Hz,和-125 dBc/Hz,最低参考杂散达到-58dBc。  相似文献   

16.
采用TSMC65nm CMOS工艺设计了用于全数字频率综合器、频率覆盖范围8.95~11.02GHz的数字控制LC振荡器。为了减小相位噪声,本设计采用了带有尾电感的互补型LC振荡器结构;振荡器的可编程电容阵列被分成3组,以此来配合数字频率综合器的3个频率锁定过程。在电源电压为1V的情况下,振荡器的功耗为3.53mW。测试结果显示,该数字控制LC振荡器实现了40kHz的频率精度,当输出频率为9.38GHz时,在1MHz频偏处,相位噪声为-111.02dBc/Hz。  相似文献   

17.
In this letter, a delay-locked loop (DLL) suitable for low-power and low-voltage operations is presented. To overcome the performance limitations, such as a restricted locking range and elevated output jitters, a novel voltage-controlled delay cell and a phase/frequency detector with a start controller are employed in the proposed DLL. Using a standard 0.18 mum CMOS process, the fabricated circuit exhibits a locking range from 85 to 550 MHz. The measured peak-to-peak and rms jitters at 550 MHz are 25.6 and 3.8 ps, respectively. Operated at a supply voltage of 0.6 V, the power consumption of the DLL circuit varies from 2.4 to 4.2 mW within the entire locking range.  相似文献   

18.
This paper presents a novel DLL-based frequency synthesizer architecture to generate fractional multiples of reference frequency and reduce the power consumption of the frequency synthesis block. The architecture is adopted for French VHF application as an example. The DLL architecture allows for minimal area, while consuming low power. The proposed circuit can operate at a substantially low supply voltage. The circuit level and system level designs are presented. It was shown that for the mentioned standard, a mere 27 delay stages for VCDL are sufficient to cover French VHF band. Simulation results confirm the analytical predictions. The proposed DLL-based frequency synthesizer is implemented in a 0.13 μm CMOS technology. This fractional DLL-based frequency synthesizer is adopted for 176 MHz to 216 MHz with maximum power consumption of 2.62 mW and RMS jitter of 10 ps @ 216 MHz.  相似文献   

19.
This paper describes a low-voltage low-jitter clock synthesizer and a temperature-compensated tunable oscillator. Both of these circuits employ a self-correcting delay-locked loop (DLL) which solves the problem of false locking associated with conventional DLLs. This DLL does not require the delay control voltage to be set on power-up; it can recover from missing reference clock pulses and, because the delay range is not restricted, it can accommodate a variable reference clock frequency. The DLL provides multiple clock phases that are combined to produce the desired output frequency for the synthesizer, and provides temperature-compensated biasing for the tunable oscillator. With a 2-V supply the measured rms jitter for the 1-GHz synthesizer output was 3.2 ps. With a 3.3-V supply, rms jitter of 3.1 ps was measured for a 1.6-GHz output. The tunable oscillator has a 1.8% frequency variation over an ambient temperature range from 0°C to 85°C. The circuits were fabricated on a generic 0.5-μm digital CMOS process  相似文献   

20.
设计了一种采用电荷泵锁相技术的7.13~7.37GHz宽带跳频信号源,采用复杂可编程逻辑器件(CPLD)控制电荷泵锁相环(CPPLL)频综芯片ADF4108产生跳频信号,跳频带宽高达240 MHz,输出功率约10dBm,电平波动为0.7dB,杂散抑制<-70dBc,输出端采用六阶微带低通滤波器进行带外谐波抑制,二次谐波抑制<-60dBc,传输速率快,电路模块结构紧凑。实验结果表明,所设计的跳频宽带信号源具有快跳变,低相噪,低杂散,高可靠性及高稳定度等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号