首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The paper presents two types of a passive safety containment for a near future BWR. They are named Mark S and Mark X containment. One of their common merits is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. The PCV pressure can be moderated within the design pressure. Another merit is the capability to submerge the PCV and the RPV above the core level. The third merit is robustness against external events such as a large commercial airplane crash. Both the containments have a passive cooling core catcher that has radial cooling channels. The Mark S containment is made of reinforced concrete and applicable to a large power BWR up to 1830 MWe. The Mark X containment has the steel secondary containment and can be cooled by natural circulation of outside air. It can accommodate a medium power BWR up to 1380 MWe. In both cases the plants have active and passive safety systems constituting in-depth hybrid safety (IDHS). The IDHS provides not only hardware diversity between active and passive safety systems but also more importantly diversity of the ultimate heat sinks between the atmosphere and the sea water. Although the plant concept discussed in the paper uses well-established technology, plant performance including economy is innovatively and evolutionally improved. Nothing is new in the hardware but everything is new in the performance.  相似文献   

2.
Advanced boiling water reactor (ABWR) plants have achieved an excellent operating performance since the first ABWR plant started its commercial operation in 1996. Based on the ABWR technology, progress has been made towards a next generation ABWR, AB1600 in Toshiba. The AB1600 plant aims at meeting the demand for the replacement of the current BWRs, which is expected to be realized by 2020 and beyond. In the AB1600 design, therefore, further improvements in economic and reliability aspects have been pursued by incorporating several new technologies. The reactor power is uprated to 1600 MWe from 1350 MWe of the first ABWR plant in order to benefit from economy of scale. A large fuel assembly with high power density is adopted in order to reduce both of the capital cost and maintenance cost associated with refueling by decreasing the number of fuel assemblies and control rod drives. The AB1600 safety system design employs a hybrid safety system, which consists of both active and passive systems for the design basis and the beyond-design basis accidents, to enhance the safety of the plant. As a countermeasure against severe accidents, the passive systems for the functions of decay heat removal, coolant injection and molten core debris cooling are incorporated.  相似文献   

3.
《Annals of Nuclear Energy》2001,28(4):333-349
SMART (system-integrated modular advanced reactor) is a 330 MWt advanced integral PWR, which is under development at KAERI for seawater desalination and electricity generation. The conceptual design of the SMART desalination plant produces 40,000 m3/day of potable water and generates about 90 MW of electricity, which are assessed as sufficient for a population of about 100,000. The SMART enhances safety by adopting the inherent safety design features such as the elimination of large break loss of coolant accidents, substantially large negative moderator temperature coefficients, etc. In addition, the safety goals of the SMART are achieved through the adoption of passive engineered safety systems such as an emergency core cooling system, passive residual heat removal system, safeguard vessel, and reactor and containment overpressure protection systems. This paper describes the design concept of the major safety systems of the SMART and presents the results of the safety analyses using a MARS/SMR code for the major limiting accidents including transient behaviors due to desalination system disturbances. The analysis results employing conservative initial/boundary conditions and assumptions show that the safety systems of the SMART conceptual design adequately remove the core decay heat and mitigate the consequences of the limiting accidents, and thus secure the plant to a safe condition.  相似文献   

4.
The Advanced Boiling Water Reactor (ABWR) design is based on construction and operating experience of nuclear power plants in Japan, United States, and Europe. To optimize the plant arrangement of the Advanced Boiling Water Reactor (ABWR) and to verify the structural feasibility to carry design loads a study was conducted. To arrive at an optimized plant arrangement with a minimum size reactor building (RB), a circular cylindrical reinforced concrete containment vessel (RCCV) with a flat top slab and a monolithically connected diaphragm slab has been selected.The Simplified Boiling Water Reactor (SBWR) is being developed as a standardized 600 MWe Advanced Light Water Reactor. The design concept of the SBWR is based on simplicity and passive features to enhance safety and reliability, improve performance and increase economic viability. Due to the use of passive containment cooling, SBWR has features that are different from those of existing designs.The objectives of the study for the ABWR containment and RB are to perform a structural analysis of the containment and RB and to evaluate the structure for conformance to the U.S. NRC requirements. The main objective of the studies for the SBWR is to demonstrate the structural design feasibility of the containment for the pressure and the temperature response associated with the passive systems adopted for the SBWR.  相似文献   

5.
The paper presents variations of a certain passive safety containment for a near future BWR. It is tentatively named Mark S containment in the paper. It uses the operating dome as the upper secondary containment vessel (USCV) to where the pressure of the primary containment vessel (PCV) can be released through the upper vent pipes. One of the merits of the Mark S containment is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. Another merit is the capability to submerge the PCV and the reactor pressure vessel (RPV) above the core level by flooding water from the gravity-driven cooling system (GDCS) pool and the upper pool. The third merit is robustness against external events such as a large commercial airplane crash owing to the reinforced concrete USCV. The Mark S containment is applicable to a large reactor that generates 1830 MW electric power. The paper presents several examples of BWRs that use the Mark S containment. In those examples active safety systems and passive safety systems function independently and constitute in-depth hybrid safety (IDHS). The concept of the IDHS is also presented in the paper.  相似文献   

6.
The paper presents probable variations of passive safety boiling water reactor (BWR). In order to improve safety and economy of passive safety BWR, the authors thought of use of a kind of improved Mark III type containment. The paper presents the basic configuration of the passive safety BWR that has an improved Mark III type containment. We tentatively call this passive safety BWR advanced safer BWR+ (ASBWR+) and the containment Mark X containment in the paper. One of the merits of the Mark X containment is double containment function against fission products (FP) release. Another merit is very low peak pressure at severe accidents without active cooling systems. The third merit is coolability by natural circulation of outside air. Therefore, the Mark X containment is very suitable for passive safety BWRs. It does not need a reactor building (R/B) as the secondary containment, because it is a double containment by itself. The Mark X containment is a general concept and also useful for half-passive safety BWRs that have both active and passive safety systems. In those examples, active safety systems and passive safety systems function independently and constitute in-depth hybrid safety (IDHS). The concept of the IDHS is also presented in the paper.  相似文献   

7.
AREVA NP has developed an innovative boiling water reactor (BWR) SWR-1000 in close cooperation with German nuclear utilities and with support from various European partners. This Generation III+ reactor design marks a new era in the successful tradition of BWR and, with a net electrical output of approximately 1250 MWe, is aimed at ensuring competitive power generating costs compared to gas and coal fired stations. It is particularly suitable for countries whose power networks cannot facilitate large power plants. At the same time, the SWR-1000 meets the highest safety standards, including control of core melt accidents. These objectives are met by supplementing active safety systems with passive safety equipment of various designs for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. The plant is also protected against airplane crash loads.The functional capabilities and capacities of all new systems and components were successfully tested under realistic and conservative boundary conditions in large-scale test facilities in Finland, Switzerland and Germany.In general, the SWR-1000 design is based on well-proven analytical codes and design tools validated for BWR applications through recalculation of relevant experiments and independent licensing activities performed by authorities or their experts. The overview of used analytical codes and design tools as well as performed experimental validation programs is presented.Effective implementation of passive safety systems is demonstrated through the numerical simulation of transients and loss of coolant accidents (LOCAs) as well as through analytical simulation of a severe accident associated with the core melt. In the LOCA simulation presented the existing active core flooding systems were not used for emergency control: only passive systems were relevant for the analyses. Despite this - no core heat-up occurred. In the case of reactor core melting numerically is demonstrated that the molten core debris would be retained inside the reactor vessel due to the effective passive external water cooling of the vessel, keeping it completely intact.A short construction period of just 48 months from first concrete to provisional take over, flexible fuel cycle lengths of between 12 and 24 months and a high fuel discharge burn-up all contribute towards meeting economic goals. Realistic average availability for a plant lifetime of 60 years and 12 months cycle is 94.5%. Systems and plant design were reviewed by expert groups of European utilities. With the SWR-1000, AREVA NP has developed a design concept for a BWR plant that is now ready for commercial deployment and which fully meets the most stringent international requirements in terms of nuclear safety and nuclear regulatory.  相似文献   

8.
If cooling is inadequate during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 accident. In such a case, concerns about containment failure and associated risks can be eliminated if it is possible to ensure that the lower head remains intact so that relocated core materials are retained within the vessel. Accordingly, in-vessel retention (IVR) of core melt as a key severe accident management strategy has been adopted by some operating nuclear power plants and planned for some advanced light water reactors. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements can provide sufficient heat removal to assure IVR for high power reactors (i.e., reactors with power levels up to 1500 MWe). Consequently, a joint United States/Korean International Nuclear Energy Research Initiative (I-NERI) has been launched to develop recommendations to improve the margin of success for in-vessel retention in high power reactors. This program is initially focussed on the Korean Advanced Power Reactor—1400 MWe (APR1400) design. However, recommendations will be developed that can be applied to a wide range of existing and advanced reactor designs. The recommendations will focus on modifications to enhance ERVC and modifications to enhance in-vessel debris coolability. In this paper, late-phase melt conditions affecting the potential for IVR of core melt in the APR1400 were established as a basis for developing the I-NERI recommendations. The selection of ‘bounding’ reactor accidents, simulation of those accidents using the SCDAP/RELAP5-3D© code, and resulting late-phase melt conditions are presented. Results from this effort indicate that bounding late-phase melt conditions could include large melt masses (>120,000 kg) relocating at high temperatures (3400 K). Estimated lower head heat fluxes associated with this melt could exceed the maximum critical heat flux, indicating additional measures such as the use of a core catcher and/or modifications to enhance external reactor vessel cooling may be necessary to ensure in-vessel retention of core melt.  相似文献   

9.
The design of the simplified boiling water reactor (SBWR-1200) is characterized by utilizing fully passive safety systems. The emergency core cooling is realized by the gravity driven core cooling system, and the decay heat removal is done by the passive containment cooling system and isolation condenser system. All of the systems have multiple units and could be partially failed. The objective of this paper is to analyze the system response under the multiple malfunctions of passive safety systems in the SBWR-1200.

The chosen accident scenario is a small break loss of coolant accident with one of three gravity driven core cooling system drain lines blocked and one of three passive containment cooling system condensers disabled. An integral test has been carried out in the PUMA facility for 16 h. The facility is designed for low pressure, long term cooling operation with the multiple safety related components; therefore, it has the flexibility to demonstrate the asymmetric or multiple-failure effects with the combination of disability of safety systems. The test initial conditions at 1 MPa (150 psi) are obtained from RELAP5/MOD3.2 code simulation for the SBWR-1200 with appropriate scaling considerations.

Comparisons have been first made between the multiple-failure test and a single-failure test preformed previously. It shows that the core has been covered with liquid coolant during all of accident transient even though there is an apparent coolant inventory reduction in the multiple-failure test. The decay heat removal has no significant difference because the remaining two passive containment cooling condensers increase their cooling capacities, and even the drywell pressure is slightly lower due to the cold water injection from the suppression pool. Comparisons have also been made between the scaled-up test data and the code simulation at the prototypic level. The prototypic simulation is done by RELAP5/MOD3.2. Agreements between the code simulation and the scaled-up test data confirm the code applicability and the facility scalability for this accident scenario.  相似文献   


10.
Station blackout is reported to be a sequence that would likely be a significant contributor to the accident risk at a boiling water reactor (BWR). The occurrence frequency of station blackout is evaluated in probabilistic safety assessment (PSA) to be 6×10?6 per reactor year at Limerick and less than 10?7 per reactor year at BWR in Japan.

This report describes an analytical study of thermal-hydraulic and radionuclide behavior during a postulated severe accident of station blackout at a reference BWR plant. The analytical approach was shown in both of hand calculation and the THALES/ART code calculation to better understand wide physical and chemical phenomena in the processes of severe accidents.

We evaluated timing of key events, core cooling and core temperature, reactor vessel failure, debris temperature, containment pressure, and release and deposition of radionuclide in the containment. The THALES and CORCON models on the chemical reactions in the core-concrete interaction lead to great differences in the increasing rate of containment pressure and the release rate of fission products from the core debris.  相似文献   

11.
The Advanced Boiling Water Reactor (ABWR) is being developed by an international team of BWR manufacturers to respond to worldwide utility needs in the 1990s. Major objectives of the ABWR program are design simplification; improved safety and reliability; reduced construction, fuel and operating costs; improved maneuverability; and reduced occupational exposure and radwaste.The ABWR incorporates the best proved features from BWR designs in Europe, Japan, and the United States and application of leading edge technology. Key features of the ABWR are internal recirculation pumps; fine-motion, electro-hydraulic control rod drives; digital control and instrumentation; multiplexed, fiber optic cabling network; pressure suppression containment with horizontal vents; cylindrical reinforced concrete containment; structural integration of the containment and reactor building; severe accident capability; state-of-the-art fuel; advanced turbine/generator with 52 in. last stage buckets; and advanced radwaste technology.The ABWR is being developed as the next generation Japan standard BWR under the guidance and leadership of the Tokyo Electric Power Company, Inc. and a group of Japanese BWR utilities. During 1987, the Tokyo Electric Power Company, Inc. announced its decision to proceed with two ABWR units at its Kashiwazaki-Kariwa Nuclear Power Station, with commercial operation of the first unit in 1996 and the second unit in 1998. The units will be supplied by a joint venture of General Electric, Hitachi and Toshiba, with General Electric selected to supply the nuclear steam supply systems, fuel and turbine/generators. In the United States it is being adapted to the needs of U.S. utilities through the Electric Power Research Institute's Advanced LWR Requirements Program, and is being reviewed by the U.S. Nuclear Regulatory Commission for certification as a preapproved U.S. Standard BWR under the U.S. Department of Energy's ALWR Design Verification Program. These cooperative Japanese and U.S. Programs are expected to establish the ABWR as a world class BWR for the 1990s.International cooperative efforts are also underway aimed at development of a simplified BWR employing natural circulation and passive safety systems. This BWR concept, while only in the conceptual design stage, shows significant technical and economic promise.  相似文献   

12.
小破口失水事故非能动系统瞬态特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为了解先进压水堆小破口失水事故下非能动安全壳冷却系统、非能动堆芯冷却系统、非能动余热排出系统的瞬态响应特性,需开展小破口失水事故下反应堆冷却剂系统和安全壳的耦合响应特性研究。分析结果表明,小破口失水事故下,耦合分析中非能动余热排出系统、非能动堆芯冷却系统、自动卸压系统和非能动安全壳冷却系统的特性与独立计算有较大差异,小破口失水事故下耦合分析得到的安全壳压力峰值小于独立计算。   相似文献   

13.
The goal of the safety design for the demonstration fast breeder reactor is to ensure that the safety level is equivalent to or higher than that of the light water reactors of the same period. The design of the safety features such as reactor shutdown, decay heat removal and confinement systems is of importance to reach the goal. The reactor core is equipped with two independent fast shutdown systems, the primary system and the backup system. In addition, it is planned to strengthen the passive shutdown capability by using self- actuated systems such as a Curie point device for the backup system. The decay heat is removed from the core to the atmosphere through the safety lines of the direct reactor auxiliary cooling system which is composed of four independent lines. Furthermore, under the severe conditions that no active function of the decay heat removal system is available, the heat can be removed by natural convection through the safety lines by taking advantage of the high boiling temperature of sodium. For the confinement function, the reactor vessel is surrounded by a containment vessel and a confinement area.

The design concept of these safety features is described in this paper.  相似文献   


14.
大型非能动压水堆核电厂在发生失水事故(LOCA)后的长期堆芯冷却阶段依靠重力向堆芯注入应急冷却水,其注射管线上设置的旋启式止回阀的阻力可随流量变化,管线的阻力可能将非预期地增加。根据旋启式止回阀阻力特性,为失水事故最佳估算系统分析程序添加相应的计算功能,对压力容器直接注射(DVI)管线双端断裂事故后长期堆芯冷却工况进行了计算分析。结果表明:安全注射管线上旋启式止回阀阻力变化对大型非能动压水堆核电厂LOCA后长期冷却的影响较小;在安全裕量不足的情况下,旋启式止回阀的阻力特性将影响到非能动注射管线的安全注射功能的执行。  相似文献   

15.
A generation III+ Boiling Water Reactor (BWR) which relies on natural circulation has evolved from earlier BWR designs by incorporating passive safety features to improve safety and performance. Natural circulation allows the elimination of emergency injection pump and no operator action or alternating current (AC) power supply. The generation III+ BWR's passive safety systems include the Automatic Depressurization System (ADS), the Suppression Pool (SP), the Standby Liquid Control System (SLCS), the Gravity Driven Cooling System (GDCS), the Isolation Condenser System (ICS) and the Passive Containment Cooling System (PCCS). The ADS is actuated to rapidly depressurize the reactor leading to the GDCS injection. The large amount of water in the SP condenses steam from the reactor. The SLCS provides makeup water to the reactor. The GDCS injects water into the reactor by gravity head and provides cooling to the core. The ICS and the PCCS are used to remove the decay heat from the reactor. The objective of this paper is to analyze the response of passive safety systems under the Loss of Coolant Accident (LOCA). A GDCS Drain Line Break (GDLB) test has been conducted in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) which is scaled to represent the generation III+ BWR. The main results of PUMA GDLB test were that the reactor coolant level was well above the Top of Active Fuel (TAF) and the reactor containment pressure has remained below the design pressure. In particular, the containment maximum pressure (266 kPa) was 36% lower than the safety limit (414 kPa). The minimum collapsed water level (1.496 m) before the GDCS injection was 8% lower than the TAF (1.623 m) but it was ensured that two-phase water level was higher than the TAF with no core uncovery.  相似文献   

16.
A new small reactor concept named Package-Reactor has been developed through a joint research of Mitsubishi Heavy Industries, Ltd. and Hitachi, Ltd. Several key designs have been investigated, taking into account both PWR and BWR technologies. The Package-Reactor is designed to attain high reliability, high safety, good maintainability, good operability and low construction cost. To achieve the aims, its nuclear steam supply system adopts the natural-circulation core cooling system, and the reactivity-control-free system, under normal operation. The core assembly is composed of several sub-cores. Each sub-core is housed in a pressure tube called “cassette”. The cycle length is five years, by using UO2 fuel with 5wt% enrichment. The containment vessel is small and the nuclear steam supply system can be constructed through ground transportation.  相似文献   

17.
If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel lower head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe Pressurized Water Reactor (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for in-vessel retention (IVR), resulted in the United States Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing Light Water Reactors (LWRs). Accordingly, IVR of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors. However, it is not clear that currently-proposed methods to achieve ERVC will provide sufficient heat removal for higher power reactors. A US–Korean International Nuclear Energy Research Initiative (INERI) project has been initiated in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) will determine if IVR is feasible for reactors up to 1500 MWe. This paper summarizes results from the first year of this 3-year project.  相似文献   

18.
For any innovated plant design, the designed paper plant can be converted into a computer as a digital plant with advanced simulation techniques before being constructed into a real plant. A digital plant, namely engineering simulator, can be applied for: (1) verification of system design and system integration, (2) power test simulation, (3) plant transient and accident analyses, (4) plant abnormal and emergency procedure development and verification, (5) design change verification and analysis, etc. An advanced engineering simulator was successfully developed for the LungMen advanced boiling water reactor (ABWR) plant to support various applications before and after commercial operation. This plant specific engineering simulator was developed based on two separate RELAP5-3D modules synchronized on a commercial simulation platform, namely 3-Key Master. On this advanced LungMen plant simulation (ALPS) platform, major plant dynamics were simulated by two separate RELAP5-3D modules, one for reactor system modeling and the other for balance of plant (BOP) system modeling. Moreover, major control systems as well as emergency core cooling system (ECCS) were all simulated in great detail with built-in tasks of this commercial simulation platform. Different from real time calculation on training simulator, precision of engineering calculation is intentionally kept by synchronizing modules based on the most time-consuming one. During synchronization, each module will check its’ own converge criteria in each small time advancement. This plant specific advanced ABWR engineering simulator has been successfully applied on: (1) licensing blowdown analysis of feed water line break (FWLB) for containment design; (2) phenomena investigation of low-pressure ECC injection bypass during FWLB; (3) analysis of FW pump performance during power ascending; (4) verification of plant vendor's pre-test calculations of each start-up test.  相似文献   

19.
A fully natural circulation-based system is adopted in the decay heat removal system (DHRS) of an advanced loop type fast reactor. Decay heat removal by natural circulation is a significant passive safety measure against station blackout. As a representative of the advanced loop type fast reactor, DHRS of the sodium fast reactor of 1500 MWe being designed in Japan comprises a direct reactor auxiliary cooling system (DRACS), which has a dipped heat exchanger in the reactor vessel, and two units of primary reactor auxiliary cooling system (PRACS), which has a heat exchanger in the primary-side inlet plenum of an intermediate heat exchanger in each loop. The thermal-hydraulic phenomena in the plant under natural circulation conditions need to be understood for establishing a reliable natural circulation driven DHRS. In this study, sodium experiments were conducted using a plant dynamic test loop to understand the thermal-hydraulic phenomena considering natural circulation in the plant under a broad range of plant operation conditions. The sodium experiments simulating the scram transient confirmed that PRACS started up smoothly under natural circulation, and the simulated core was stably cooled after the scram. Moreover, they were conducted by varying the pressure loss coefficients of the loop as the experimental parameters. These experiments confirmed robustness of the PRACS, which the increasing of pressure loss coefficient did not affect the heat removal capacity very much due to the feedback effect of natural circulation.  相似文献   

20.
王志 《中国核电》2011,(3):195-206
AP1000在标准设计中革新性重大改进之一就是采用了独特的非能动堆芯冷却系统(PXS)。目前世界上在役核电厂和在建核电工程中,AP1000非能动堆芯冷却系统是第一个完全采用非能动手段来达到堆芯冷却、冷却剂补充以及限制放射性释放等安全功能的安全相关系统。文章结合AP1000非能动堆芯冷却系统设计与运行,应用包络方法对一些重要的设计瞬态进行研究分析,从而得出系统设计的合理性和系统功能实现的可行性,为自主研发ACP100、ACP600、ACP1000等第三代核电技术提供借鉴和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号