首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanosheets of lithium vanadium oxide (LiV3O8) were successfully synthesized by a simple low temperature citrate sol–gel combustion route. Compact nanosheets of the active material were observed by scanning and transmission electron microscopies. X-ray diffraction measurements indicated that as-prepared nanosheets presented pure phase of monoclinic LiV3O8 with p21/m symmetry. Cyclic voltammetry (CV) was employed to investigate the electrochemical behavior of the nanosheets with special emphasis on the application potential as anodic material for aqueous rechargeable lithium batteries. CV studies demonstrated that the LiV3O8 nanosheets represent well-defined reversible peaks. The nanosheets showed a discharge capacity of 63 mAh/g in 1.0 M LiNO3 solution at a 2C/5 rate.  相似文献   

2.
The copper-doped LiV3O8 was first prepared by mixing copper powder with solid-state synthesized LiV3O8 in distilled water. The electrochemical performance of the copper-doped LiV3O8 was compared with that of the undoped one. It was found that the electrochemical performance of the copper-doped sample is significantly improved, with an initial capacity of 265.0 mAh/g and a stabilized capacity of 227.7 mAh/g after 100 cycles. It indicates that the copper-doped LiV3O8 could be easily prepared by a simple addition of the doping metal.  相似文献   

3.
The LiV3O8 nanowires are fabricated by using sol–gel process with porous anodic aluminum oxide (AAO) as the template. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) characterizations show that the synthesized LiV3O8 nanowires are monodispersed and paralleled to one another. Selected area electron diffraction (SAED) pattern, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) investigations jointly demonstrate that the synthesized nanowires are most consisted of monoclinic phase LiV3O8. Since the LiV3O8 nanowires can be mass-produced by using this method, it is expected to find promising application as a new cathode material in lithium ion battery.  相似文献   

4.
LiV3O8 has been coated by various amounts of Co0.58Ni0.42 oxide nanoneedles using a chemical co-precipitation method. The influences of the coating on the structure, morphology, and electrochemical properties of LiV3O8 have been characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and electrochemical measurements. Co0.58Ni0.42 oxide coated LiV3O8 materials exhibit distinct surface morphology. The coating has been found to improve the electrochemical performance of LiV3O8 significantly. Especially, 5.0 wt.% Co0.58Ni0.42 oxide nanoneedles coated LiV3O8 shows much better electrochemical performance than uncoated LiV3O8. It has been proved that Co0.58Ni0.42 oxide coating suppresses phase transitions and decreases the charge-transfer impedance of LiV3O8 effectively.  相似文献   

5.
A series of cathode materials for lithium ion batteries with the formula LiNi0.8−xCo0.2CexO2 (0 ≤ x ≤ 0.03) were synthesized by sol–gel method using citric acid as a chelating agent. The effects of cerium substitution on the structural, electrochemical and thermal properties of the cathode materials are investigated through X-ray diffraction (XRD), charge–discharge cycling, cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS) experiments and differential scanning calorimetry (DSC). Results show that the Ce substitution made the layered structure of materials more regular and less cation-ion mixing. An effective improved cycling performance is observed for cerium-doped cathode materials, which is interpreted to a significant suppression of phase transitions and charge-transfer impedance increasing during cycling. The thermal stability of cerium-doped materials is also improved, which can be attributed to its lower oxidation ability and enhanced structural stability at delithiated state.  相似文献   

6.
LiV3O8 cathode materials are post-treated by a special emulsion method (termed “EM”) and then calcinated at different temperatures. The experimental results show that the structure of these oxides is different from LiV3O8 prepared by the solid-state reaction (acronym “STATE”) route, although their starting materials are identical. The EM product prepared at 500 °C exhibits a better electrochemical behavior than its counterpart prepared by traditional methods (STATE) or by EM at other temperatures. Its initial discharge capacity is 305 mAh g−1, and it still maintains 250.2 mAh g−1 after 100 cycles at 0.2 C at the voltage range of 1.8–4.0 V vs. Li/Li+.  相似文献   

7.
To solve the problem of the extremely high hydrolytic reactivity of tellurium alkoxides in hydrolytic sol–gel method, the nonhydrolytic sol–gel process has been applied as a novel route for producing TeO2 based thin films. The transition of nonhydrolytic sol–gel was monitored by means of 1H NMR, FT-IR and Raman techniques. These results show that the formation of Te–O–Te bonds in gel networks mainly resulted from the nonhydrolytic cross-condensation reaction between different Te–OR groups. The decomposition process and structure evolution of the nonhydrolytic gel products were investigated and managed. Results from DTA and XRD analyses show that metallic tellurium, β-TeO2 and α-TeO2 phase appeared in the film during heat-treatment process at around 300, 350 and 400 °C, respectively. The formation of metallic tellurium can be alleviated through preheating the gel films under O2 atmosphere or by additions of the second component. Crystallization of α-TeO2 could be retarded by additions of TiO2 or Al2O3, and the transparent, homogeneous amorphous TeO2 based thin films were obtained by the methods above. The nonhydrolytic sol–gel process developed in this study offers a simple and practical method for fabricating TeO2 based thin film devices.  相似文献   

8.
In this work, we demonstrate that yttrium 2-methoxyethoxide is a convenient sol–gel precursor to synthesize the Y2O3:Eu3+ phosphor films. The crystallization of Y2O3:Eu3+ phosphor films prepared from the yttrium 2-methoxyethoxide occurs at about 550 °C. We have also observed that our Y2O3:Eu3+ phosphor films undergo crystal structure change above annealing temperature of 750 °C which is not previously observed in the sol–gel fabrication method. The change of photoluminescent (PL) spectra is related to the evolution of Y2O3 crystal structure. It is shown in this investigation that the post-annealing treatment will help to produce phosphor films of improved brightness. The reasons assigned are the effective elimination of OH impurities and the grain growth of phosphor films.  相似文献   

9.
Pure and Ag-doped In2O3 nanocrystalline powders with different doping concentrations have been prepared by a sol–gel method, and characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectrum (XPS). The results indicated that these powders had a good crystalline structure with an average crystallite size of 12 nm. The indirect heating structure sensors were fabricated by loading these powders on ceramic tubes with Au electrodes. Gas-sensing measurements indicated that the sensor fabricated from 8 wt.% Ag-doped In2O3 could detect HCHO gas down to 2 ppm with a short response time (10–15 s) and an excellent selectivity at 100 °C.  相似文献   

10.
To improve the rate capability and cyclability of LiV3O8 cathode for Li-ion batteries, LiV3O8 was modified by forming LiV3O8/carbon nanosheet composite. The LiV3O8/carbon nanosheet composite was successfully achieved via a hydrothermal route followed by a carbon coating process. The morphology and structural properties of the samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). TEM observations demonstrated that LiV3O8/carbon composite has a very flat sheet-like morphology, with each nanosheet having a smooth surface and a typical length of 400-700 nm, width of 200-350 nm, and thickness of 10-50 nm. Each sheet was surrounded by a thick layer of amorphous carbon. Electrochemical tests showed that the LiV3O8/carbon composite cathode features long-term cycling stability (194 mAh g−1 at 0.2 C after 100 cycles) and excellent rate capability (110 mAh g−1 at 5 C, 104 mAh g−1 at 10 C, and 82 mAh g−1 at 20 C after 250 cycles). Electrochemical impedance spectra (EIS) indicated that the LiV3O8/carbon composite electrode has very low charge-transfer resistance compared with pristine LiV3O8, indicating the enhanced ionic conductivity of the LiV3O8/carbon composite. The enhanced cycling stability is attributed to the fact that the LiV3O8/carbon composite can prevent the aggregation of active materials, accommodate the large volume variation, and maintain good electronic contact.  相似文献   

11.
In the present study, Ni-modified α-Al2O3 with Ni/Al ratios of 0.3 and 0.5 were prepared by sol–gel and solvothermal method and then were impregnated with 0.3 wt.% Pd. Due to different crystallization mechanism of the two preparation methods used, addition of nickel during preparation of α-Al2O3 resulted in various species such as NiAl2O4, mixed phases between NiAl2O4 and α-Al2O3, and mixed phases between NiAl2O4 and NiO. As revealed by NH3-temperature programmed desorption, formation of NiAl2O4 drastically reduced acidity of alumina, hence lower amounts of coke deposited during acetylene hydrogenation was found for the Ni-modified α-Al2O3 supported catalysts. For any given method, ethylene selectivity was improved in the order of Pd/Ni–Al2O3-0.5 > Pd/Ni–Al2O3-0.3 > Pd/Ni–Al2O3-0  Pd/α–Al2O3-commercial. When comparing the samples prepared by different techniques, the sol–gel-made samples showed better performances than the solvothermal-derived ones.  相似文献   

12.
LiNi1/3Mn1/3Co1/3O2, a high voltage and high-capacity cathode material for Li-ion batteries, has been synthesized by three different rapid synthetic methods, viz. nitrate-melt decomposition, combustion and sol–gel methods. The first two methods are ultra rapid and a time period as small as 15 min is sufficient to prepare nano-crystalline LiNi1/3Mn1/3Co1/3O2. The processing parameters in obtaining the best performing materials are optimized for each process and their electrochemical performance is evaluated in Li-ion cells. The combustion-derived LiNi1/3Mn1/3Co1/3O2 sample exhibits large extent of cation mixing (10%) while the other two methods yield LiNi1/3Mn1/3Co1/3O2 with cation mixing <5%. LiNi1/3Mn1/3Co1/3O2 prepared by nitrate-melt decomposition method exhibits superior performance as Li-ion battery cathode material.  相似文献   

13.
Yan Feng  Feng Hou 《Materials Letters》2009,63(15):1338-1340
Chromium was incorporated into lithium trivanadate by an aqueous reaction followed by heating at 100 °C. This Cr doped LiV3O8 as a cathode for lithium ion batteries exhibits 269.9 mAh g− 1 at first discharge cycle and remains 254.8 mAh g− 1 at cycle 100, with a charge-discharge current density of 150 mA g− 1 in the voltage range of 1.8-4.0 V. The Cr-LiV3O8 cathode show excellent discharge capacity, with the retention of 94.4% after 100 cycles. These result values are higher than previous reports indicating that Cr-LiV3O8 prepared by our low temperature synthesis method is a promising cathode material for rechargeable lithium ion batteries. The enhanced discharge capacity and cycle stability of Cr-LiV3O8 cathode indicate that chromium atoms promote lithium transfer or intercalation/deintercalation during the electrochemical cycles and improve the electrochemical performances of LiV3O8 cathode.  相似文献   

14.
Lithium vanadium oxide was synthesized by a new method in which LiOH, V2O5 and NH4OH were used as the starting materials to synthesize a precursor containing Li and V, and then obtain the resulting product by calcining the precursor. The LiV3O8 compound prepared by this synthesis method gave a good charge-discharge and cycle performance. A specific capacity of 258 mAh/g is obtained in the range of 1.8−4.0 V in the first cycle and 247 mAh/g in the eighth cycle.  相似文献   

15.
Yellow-emitting α-SiAlON:Eu2+ phosphors were synthesized by the gas reduction and nitridation of a homogeneous oxide precursor in a CaO–Al2O3–SiO2–Eu2O3 system at 1400–1450 °C using an NH3–CH4 mixture gas as a reduction–nitridation agent. The precursor was prepared by a sol–gel process using a low-cost nitrate, tetraethyl orthosilicate and citric acid as the starting materials. The effects of reaction parameters such as heating rate, temperature, holding time and CH4 content on the composition, microstructure and photoluminescence of the prepared powders were investigated. Nearly single-phase α-SiAlON was successfully synthesized by the one-step gas reduction and nitridation without the need for post-annealing at a higher temperature. The prepared powders consisted of relatively well-dispersed and uniform crystals with a hexagonal shape. The photoluminescence spectra of Eu-doped Ca-α-SiAlON phosphors excited by near-ultraviolet or blue light showed a broad, yellow emission band at 500–700 nm, which agrees well with that obtained from phosphors prepared by the conventional solid-state reaction.  相似文献   

16.
YbBa2Cu3O7–x (YbBCO) thick films were grown on buffered, cube-textured Nickel tapes by sol–gel dip-coating method. Yb-123 films were prepared using solutions of Yb, Ba, and Cu organometallic compounds. A solution-based Gd2O3 buffer layer was deposited by dip-coating process with excellent texture and uniformity. The texture development and surface morphology of the buffer-layer films were examined by X-ray diffraction, pole figures, and ESEM analysis. Microstructure and characterization of Yb-123 films were done by ESEM, EDS, and XRD analysis. T c and J c were conducted by four-wire measurement method  相似文献   

17.
Nickel oxide (NiO), iron (III) oxide (Fe2O3), and mixed oxide (Ni0.04Zn0.96O and Fe0.03Zn0.97O) nanoparticles were synthesized by modified sol–gel method. The nanoparticle structural and morphological properties were investigated by infrared spectroscopy (FTIR), X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), and Mössbauer spectroscopy. The mixed oxides were characterized by energy-dispersive X-ray spectroscopy (EDX). The oxide precursor powders were analyzed by thermogravimetry (TG) and differential scanning calorimetry (DSC). The average sizes of the obtained NiO and Ni0.04Zn0.96O nanocrystallites were evaluated by X-ray line broadening using Scherrer's equation and were found to be 36 and 23 nm, respectively. Fe2O3 and Fe0.03Zn0.97O nanoparticles presented similar sizes, around 19 nm. EDX spectroscopy indicated that the calculated compositions of the mixed oxides were nearly consistent with their estimated molar ratios.  相似文献   

18.
19.
In this paper, Ba0.5Sr0.5Co0.8Fe0.2O3−δxSm0.2Ce0.8O1.9 (BSCF–xSDC, x = 0–60 wt.%) composite cathodes were prepared by soft chemical methods, and then examined for potential applications in lower temperature solid oxide fuel cells. Both DC polarization and AC impedance spectroscopy measurements indicated that the addition of SDC electrolyte into BSCF remarkably improved the electrochemical properties. The optimum composition was found to be BSCF–30SDC, which exhibited 5.5 times higher polarization current density and 15.1% polarization resistance, compared with the pure-phase BSCF cathode at 550 °C.  相似文献   

20.
Perovskite-type oxides BaCe0.90Sm0.10O3−δ (BCS) and BaCe0.80Gd0.10Sm0.10O3−δ (BCGS) were synthesized by the sol–gel method and characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Using the sintered samples as solid electrolytes and silver–palladium alloy as electrodes, ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in a solid-state proton-conducting cell reactor. The maximum rate of production of ammonia was 5.82×10−9 mol s−1 cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号