首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了攀钢热态铸余渣在转炉炼钢厂的循环应用情况,分析对比铸余渣循环利用前后辅料消耗、铸余渣回收率等生产数据后表明,回收热态铸余渣有利于降低钢铁料消耗,降低辅料消耗1.11kg/t钢,同时促进了精炼快速成渣,缩短了精炼处理时间,保证了精炼钢水的质量。  相似文献   

2.
介绍了武钢CSP钢包铸余渣的热态循环回收利用工艺,该工艺在LF炉对连铸钢包液态铸余渣进行了热态在线循环利用,深入分析了铸余渣循环利用过程中LF炉精炼终渣变化及其对钢水质量的影响。结果表明:通过热态渣的在线循环,LF炉造渣料及脱氧剂消耗大幅降低,其中石灰降低1.01kg/t,精炼渣降低0.21kg/t,脱氧剂铝合金降低0.20kg/t,电耗降低3.66kWh/t,回收了浇铸残余钢水,金属料消耗降低3.0kg/t。  相似文献   

3.
孟华栋  杨勇  姚同路 《中国冶金》2022,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

4.
孟华栋  杨勇  姚同路 《中国冶金》2006,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

5.
铸余渣综合利用是钢铁企业节能减排的重要方法.在分析铸余渣资源属性的基础上,结合炼钢工艺流程,研究了铸余渣返生产的工艺路径和关键技术,重点讨论了返生产过程中由于温降而产生的粘罐和铸余渣与铁水混兑时的喷爆问题,提出了通过调整钢水碳含量解决钢水粘罐问题的技术措施和通过实验室研究解决喷爆的思路.同时结合现场生产管理调度,分析了铸余渣返生产后的炼钢工艺优化方向,为铸余渣的资源化利用提供了依据.  相似文献   

6.
铸余渣是连铸浇注结束后残余在钢包内的钢水和炉渣,传统的铸余渣冷态回收法存在污染大、效率低、金属损耗大等缺点,铸余渣热态回收利用逐步受到重视。根据不同钢种的铸余渣特性,同时结合铁水中元素与铸余渣反应原理,确定了热态铸余渣返转炉利用的工艺路径:超低碳钢种的热态铸余渣返回时,向铁水包中倒入30~40 t铁水,承接2~3炉铸余渣,直接倒入转炉进行冶炼,吨钢石灰下降4.3 kg,脱磷率提高3.6%;其他钢种的热态铸余渣返回时,向铁水包中倒入60~70 t铁水,承接4~5炉铸余渣后返倒罐进行受铁,吨铁脱硫镁粉下降0.14 kg。该工艺的热态铸余渣返回转炉冶炼比例达到72.5%,有效地利用了铸余渣的冶金功效,钢铁料消耗从1 095 kg/t下降到1 090 kg/t,降低了5 kg/t,取得了显著的经济效益。  相似文献   

7.
田新喜  郑果  武炜 《黑龙江冶金》2015,(3):40-41,45
LF炉精炼后的钢渣仍含有少量硫,可以回收再利用。通过对LF炉热态钢渣渣系分析,山东石横特钢集团有限公司炼钢厂在生产PSB830系列精轧螺纹钢时,回收利用精炼渣,取得了良好效果。  相似文献   

8.
通过对LF炉热态渣循环利用的研究,简要介绍了LF炉热态渣循环利用的工艺技术、遇到的问题及解决方法,为节约能源、降低物耗,降低生产成本提供途径。  相似文献   

9.
首钢精炼82B、40Cr、20CrMnTi、60Si2Mn等钢种采用LF循环利用热态返回渣工艺。LF使用热态还原循环渣精炼特殊钢时,补加合成渣(或活性石灰)200~400kg/炉,适当增加电石消耗量,并用铝粒、电石、硅铁粉对渣脱氧。生产实践表明,采用该工艺使精炼脱硫率达到50%以上,LF后钢水氧活度≤10×10-6,并使LF造渣料-合成渣减少5kg/t,埋弧渣减少2kg/t,冶炼成本降低7元/t。热态精炼渣具有较高的回收利用价值。  相似文献   

10.
介绍了LF精炼热态渣在转炉炼钢厂的循环应用情况,分析对比精炼渣循环利用前后电极消耗、电量消耗、辅料消耗、脱硫能力、钢水回收量等生产数据后表明,精炼渣循环利用后的钢水回收量比原工艺多了1.175t/炉,电极消耗降低0.08kg/t,电耗降低7.7kW·h/t,石灰降低6.12kg/t,萤石降低1.65kg/t,同时促进了精炼快速成渣,缩短了精炼处理周期,保证了精炼钢水的质量。  相似文献   

11.
为了合理利用返回的连铸铸余渣,对铸余渣组分进行分析,得到其碱度平均值为4.09,w(TFe+MnO)平均值为1.64%,属于高碱度还原性炉渣。对4种铸余渣返回利用方式进行了对比分析,结果表明:返回利用效果优劣次序依次为出钢前、出钢后、LF精炼开始前和LF精炼造渣期。在转炉出钢前进行返回利用效果最佳,适宜的铸余渣返回量为5.0~12.0kg/t,吨钢综合冶炼成本可节约5.94元。  相似文献   

12.
赵成林  张宁  朱晓雷  张维维  王丽娟 《钢铁》2015,50(12):110-113
 LF热态渣的循环利用可减少废渣排放,降低对环境的危害。对LF热态循环渣的脱硫能力及可回收性进行了分析,热态循环渣返回LF炉和转炉参与冶金反应后,可大幅降低渣料消耗,LF炉每罐回收热态循环渣1~1.5 t,平均节省石灰及其他助溶剂用量5 kg/t(钢),转炉每罐回收热态循环渣3~5 t,渣料消耗平均降低10~15 kg/t(钢)。采用热态循环渣配加石灰的LF炉造渣制度后,在相同的处理时间内,处理终点钢水中硫质量分数与常规处理几乎相同,同时节省了能源消耗,但必须考虑对钢水增硅、增锰的影响。热态循环渣返回转炉后导致入炉铁水温度低及吹炼过程渣量较大,因此转炉吹炼全程以低枪位操作更为适宜。在不影响生产组织的情况下,热态渣以返回转炉循环利用为最佳途径。  相似文献   

13.
文章介绍了对SPHC钢种进行热态精炼渣回收,试验工艺在提高精炼渣回收利用率及余钢回收的同时降低渣料消耗、精炼电耗,试验表明热态精炼渣具有较高的回收利用价值。  相似文献   

14.
为实现“全三脱”工艺少渣冶炼,进一步降低辅料消耗,首钢京唐开发了热态脱硫渣、液态脱碳渣及铸余渣钢直接返回利用工艺。对热态渣、钢的可回收性进行了分析,并通过工业试验验证了工艺的应用效果。结果表明,回收利用5 t的脱硫渣,脱硫剂消耗可降低30%~40%,铁水温降相对减少10~15 ℃,总渣量减少30%~40%,同时可降低铁损,减少对环境的污染;对于脱碳渣,每炉回收热态渣20 t,可节约石灰3.2 t,若铁水硅质量分数小于0.15%,脱磷炉可不加石灰,钢铁料消耗相应减少2.4 kg/t,并且可取消萤石及轻烧的使用,可实现脱磷炉零辅料消耗;对于钢包铸余,通过控制高炉出铁量,将精炼工序RH/LF/CAS产生的热态精炼渣及钢包铸余兑入半钢包,连同半钢一起兑入脱碳炉中进行冶炼,铸余钢回包次数可达到6~8次,实现液态铸余直接回收。  相似文献   

15.
钢铁厂铸余渣处理循环利用中普遍存在占地大,作业效率低,安全隐患多,资源、能源损耗大,环境污染严重等不和谐问题。结合宝钢铸余渣处理的现状,创新在线处理与循环利用相当有必要,独创了格栅新技术并在宝钢一体化应用。总结和阐述了铸余渣在线处理利用与格栅新技术的安全、节能、环保与综合利用等绿色技术特征,展望了铸余渣在线处理利用与格栅新技术的发展应用前景。  相似文献   

16.
介绍了LF热态精炼渣在杭州钢铁集团公司转炉炼钢厂的循环应用试验,结果显示该工艺能够保证精炼钢水的脱硫效果,且精炼钢液中酸溶铝的含量较高,钢水回收量比原工艺多了1.178t/炉,吨钢平均降低成本22.4028元,同时推广应用试验也显示该工艺在实际生产中能够保证精炼钢水的质量及降低成本。  相似文献   

17.
铸余渣在冷却过程中为缓冷,因发生相变产生自然粉化现象,导致逸出粉尘而污染环境。在铸余渣的两种循环利用途径中,倒入下一炉钢水返回精炼炉为采用较多的一种方式。本文对铸余渣的化学成分、熔化性能进行了分析,并以其代替部分白灰和CaF2,研究了铸余渣加入量对脱硫效果和精炼渣理化性能的影响。结果表明,铸余渣中约62%的物相为Ca12Al14O32F2,30%为Ca2SiO4,具有熔化温度低、流动性好、脱硫能力强的特点;随铸余渣加入量增加,促进化渣效果显著,钢中硫含量快速降低,脱硫速率加快;将LF精炼过程加入的白灰提前至转炉出钢过程加入,且用铸余渣420 kg替代白灰574 kg,转炉出钢过程脱硫效果最优,脱硫率达到39%,VD精炼结束硫含量可降至10 ppm以下,能够满足脱硫工艺要求;VD抽真空时间延长与LF出站炉渣粘度、熔点及MI指数变化相关,返回渣的加入造成炉渣粘度降低,进而延长抽真空时间。依据现有试验结果,白灰减少量达594 kg/炉,在进...  相似文献   

18.
针对铝酸钙系精炼钢包铸余渣代替萤石作为转炉助熔剂对脱磷效率的影响,首先利用Factsage热力学软件对比计算分析了Al2O3、CaF2作为转炉炉渣助熔剂,对脱磷产物活度及磷容量的影响规律,并在实验室硅钼炉上对脱磷效率影响规律进行了对比研究。在此基础上,研究了精炼钢包铸余渣代替萤石的替代比例及应用效果。结果表明,分别以Al2O3、CaF2作为转炉脱磷助熔剂时,二者对炉渣碱度的控制要求相当;CaF2的助熔能力明显强于Al2O3,而Al2O3能降低脱磷产物的活度,增加炉渣磷容量,相比CaF2对脱磷反应具有热力学优势;w((Al2O3))为5.0%~9.0%的炉渣达到的脱磷效率,与w((CaF2))为3.0%~6.0%时相当;用武钢铝酸钙系钢包精炼铸余渣代替萤石作为转炉炼钢脱磷助熔剂,其与萤石的替换比例为2.5∶1,冶炼过程炉渣熔化良好,转炉终点钢水脱磷率提高3.0%左右。  相似文献   

19.
安钢LF热态钢渣循环再利用实践   总被引:2,自引:0,他引:2  
元伏勇  姬健营  吴海波 《河南冶金》2007,15(3):43-44,56
通过对安钢第一炼轧厂LF热钢渣渣系的优化利用的研究,简要介绍了LF如何循环利用热态钢渣的工艺技术.并优化工艺制度,加强管理,提供了一项较为实用的节能降耗途径.  相似文献   

20.
吕宁  许蔷 《江苏冶金》2007,35(3):54-55
介绍了一种新型的连铸铸余渣处理方法。该方法采用干渣水淬等技术,克服了用传统方法处理时造成环境污染、劳动强度大、生产效率低、占用场地大等缺点。是一种机械化程度高的渣处理方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号