首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of individual proteins in complex protein mixtures by high-resolution (HR), high-mass-accuracy matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) is demonstrated for synthetic protein mixtures. Instead of chemical denaturation, thermal denaturation followed by in-solution trypsin digestion is used to achieve uniform digestion of the constituents of the protein mixture. Protein identification is carried out using protein database searches with search scoring systems, which seems more effective than conventional peptide mass mapping without using a scoring system. Identification of individual proteins by MALDI HR-TOF-MS peptide mass mapping dramatically reduces data acquisition/analysis time and does not require special equipment for sample preparation/transfer prior to mass spectral analysis.  相似文献   

2.
Fourier transform tandem mass spectrometry (FT-MS/MS) can be used to unambiguously assign intramolecular chemical cross-links to specific amino acid residues even when two or more possible cross-linking sites are adjacent in the cross-linked protein. Bovine rhodopsin (Rho) in its dark-adapted state was intramolecularly cross-linked with lysine-cysteine (K-C) or lysine-lysine (K-K) cross-linkers to obtain interatomic distance information. Large, multiply charged, cross-linked peptide ions containing adjacent lysines, corresponding to Rho(50-86) (K(66) or K(67)) cross-linked to Rho(310-317) (C(316)) or Rho(318-348) (K(325) or K(339)), were fragmented by collision-induced dissociation (CID), infrared multiphoton dissociation (IRMPD), and electron capture dissociation (ECD). Complementary sequence-specific information was obtained by combining cross-link assignments; however, only ECD revealed full palmitoylation of adjacent cysteines (C(322) and C(323)) and cross-linking of K(67) (and not K(66)) to C(316), K(325), and K(339). ECD spectra contained crucial c- and z-ions resulting from cleavage of the bond between K(66) and K(67). To our knowledge, this work also presents the first demonstration that ECD can be used to characterize S-linked fatty acid acylation on cysteines. The comprehensive fragmentation of large peptides by CID, IRMPD, and particularly ECD, in conjunction with the high resolution and mass accuracy of FT-MS/MS, is shown to be a valuable means of characterizing mammalian membrane proteins with both chemical and posttranslational modifications.  相似文献   

3.
The easy detection of biomolecular interactions in complex mixtures using a minimum amount of material is of prime interest in molecular and cellular biology research. In this work, a mass spectrometry MALDI-TOF based approach, which we call intensity-fading (IF MALDI-TOFMS), and which was designed for just such a purpose, is reported. This methodology is based on the use of the MALDI ion intensities to detect quickly the formation of complexes between nonimmobilized biomolecules in which a protein is one of the partners (protein-protein, protein-peptide, protein-organic molecule, and protein-nucleic acid complexes). The complex is detected through the decrease (fading) of the molecular ion intensities of the partners as directly compared to the MALDI mass spectrum of the mixture (problem and control molecules) following the addition of the target molecule. The potential of the approach is examined in several examples of model interactions, mainly involving small nonprotein and protein inhibitors of proteases, at both the qualitative and semiquantitative levels. Using this method, different protein ligands of proteolytic enzymes in total extracts of invertebrate organisms have been identified in a simple way. The proposed procedure should be easily applied to the high-throughput screening of biomolecules, opening a new experimental strategy in functional proteomics.  相似文献   

4.
A nonenzymatic proteomics strategy is applied to the rapid identification of viruses. The approach provides solubilization and subsequent digestion of viral coat proteins in under 30 s. Acid digestions were carried out using a laboratory-quality microwave system equipped with temperature, pressure, and power controls, which allowed for precise optimization of experimental parameters. Under optimal conditions, this method provides an efficient alternative to traditional enzymatic digestion-based methods for virus identification. Following rapid microwave heating of a suspension of a model virus, RNA bacteriophage MS2, 13 chemical digestion products were detected in parallel with the coat protein precursor using MALDI-TOF MS. Because of the high sequence coverage obtained, the bacteriophage MS2 coat protein was identified with high confidence and the specificity of the identification allowed for the discrimination between bacteriophage MS2 and other closely related RNA bacteriophages.  相似文献   

5.
Amphipols (APols) are amphipathic polymers with the ability to substitute detergents to keep membrane proteins (MPs) soluble and functional in aqueous solutions. APols also protect MPs against denaturation. Here, we have examined the ability of APol-trapped MPs to be analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). For that purpose, we have used ionic and nonionic APols and as model proteins (i) the transmembrane domain of Escherichia coli outer membrane protein A, a β-barrel, eubacterial MP, (ii) Halobacterium salinarum bacteriorhodopsin, an α-helical archaebacterial MP with a single cofactor, and (iii, iv) two eukaryotic MP complexes comprising multiple subunits and many cofactors, cytochrome b(6)f from the chloroplast of the green alga Chlamydomonas reinhardtii and cytochrome bc(1) from beef heart mitochondria. We show that these MP/APol complexes can be readily analyzed by MALDI-TOF-MS; most of the subunits and some lipids and cofactors were identified. APols alone, even ionic ones, had no deleterious effects on MS signals and were not detected in mass spectra. Thus, the combination of MP stabilization by APols and MS analyses provides an interesting new approach to investigating supramolecular interactions in biological membranes.  相似文献   

6.
A method is proposed for the rapid classification of Gram-negative Enterobacteria using on-slide solubilization and trypsin digestion of proteins, followed by MALDI-TOF MS analysis. Peptides were identified from tryptic digests using microsequencing by tandem mass spectrometry and database searches. Proteins from the outer membrane family (OMP) were consistently identified in the Enterobacteria Escherichia coli, Enterobacter cloacae, Erwinia herbicola, and Salmonella typhimurium. Database searches indicate that these OMP peptides observed are unique to the Enterobacteria order.  相似文献   

7.
Extensive cross-ring fragmentation ions, which are very informative of the linkages of the monosaccharide residues constituting these molecules, were readily observed in the MALDI-TOF/TOF/MS/MS spectra of oligosaccharides. These ions, in some cases, were more intense than the commonly observed Y and B ions. The A-type ions observed for the simple oligosaccharides allowed the distinction between alpha(1-4)- and alpha(1-6)-linked isobaric structures. The distinction was based not merely on the differences in the type of ions formed, but also on the ion intensities. For example, both alpha(1-4)- and alpha(1-6)-linked isobaric structures produce ions resulting from the loss of approximately 120 m/z units, but with different intensities, as a result of the fact that they correspond to two different ions (i.e., 0,4A- and 2,4A-ions), requiring different energies to be formed. Abundant A- and X-type ions were also observed for high-mannose N-glycans, allowing the determination of linkages. In addition, the high resolution furnished by MALDI-TOF/TOF allowed determination of certain ions that were commonly overlooked by MALDI-TOF or MALDI-magnetic sector instruments as a result of their lower resolution. Moreover, as a result of the fact that MS/MS spectra for parent ions and all fragment ions are acquired under the same experimental conditions, accurate determination of the molar ratios of isomeric glycans in a mixture analyzed simultaneously by MALDI-TOF/TOF tandem MS becomes possible.  相似文献   

8.
An approach to speciation of selenium incorporated in yeast proteins was developed. The tryptic digest of a water-soluble protein fraction isolated by size-exclusion chromatography was analyzed by reversed-phase HPLC/ICPMS. The selenopeptides selected owing to the detector's elemental specificity were then analyzed by MALDI-TOFMS in order to select target ions for collision-induced dissociation MS. The latter, carried out with an electrospray Q-TOF spectrometer, enabled the sequencing of the selenopeptides detected by HPLC/ICPMS. The approach allowed for the first time the identification of a family of Se-containing proteins resulting from the replacement by selenomethionine of 2-9 methionine residues in a salt-stress-induced protein SIP18 (Mr 8874). The presence of these proteins was confirmed by MALDI-TOFMS of the original (nondigested) protein fraction. Another selenium protein identified was a heat-shock protein HSP12 (Mr 11693) in which the only methionine residue was replaced by selenomethionine. These two Se-containing proteins accounted for more than 95% of selenium in the water-soluble protein fraction.  相似文献   

9.
ESR (or EPR) spectroscopy on spin-labeled site-directed cysteine mutants is ideally suited for structural studies of membrane proteins due to its high sensitivity and its low demands with respect to sample purity and preparation. Many features can be inferred from the spectral line shape of an ESR spectrum, but the analysis of ESR spectra is complicated when multiple sites with different line shapes are present. Here, we present a method to decompose the spectrum of a doubly labeled peptide that is composed of a singly labeled, noninteracting component and a doubly labeled, dipolar-broadened component using a combination of optical and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The effect on the interspin distance calculation based on the dipolar broadening is quantified and discussed.  相似文献   

10.
Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with a top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then undergo online ionization into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows one to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs 75 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research.  相似文献   

11.
Here we describe an algorithm for identifying peptides/ proteins of known sequence and unknown peptides from partial spectra generated by an in-source decay (ISD) technique coupled with matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. The identification of protein fragments is processed with a software program called CMATCH, which generates candidate subsequences for both known peptides/proteins and unknown peptides for the major product ions in the spectral range m/z 400-5000 and then matches these to known protein sequences contained in a reference database for the known peptides/proteins. CMATCH, which is compiled for MSDOS or WINDOWS95/NT, has two main advantages: first, the candidate subsequences are generated automatically without the need for supplementary information concerning the distribution of either N-terminal or C-terminal ions in the spectra for both known peptides/proteins and unknown peptides; second, the highest coordinated homologous sequences are picked up automatically from the reference database as the best matches with known peptides/proteins. Examples from the ISD spectra of several test proteins demonstrate the efficacy of this protein identification software.  相似文献   

12.
Glycopeptides prepared from 1 nmol of a mixture of glycoproteins, transferrin, and ribonuclease B by lysylendopeptidase digestion were isolated by lectin and cellulose column chromatographies, and then they were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and MALDI-quadrupole ion trap (QIT)-TOF mass spectrometry which enables the performance of MS ( n ) analysis. The lectin affinity preparation of glycopeptides with Sambucus nigra agglutinin and concanavalin A provides the glycan structure outlines for the sialyl linkage and the core structure of N-glycans. Such structural estimation was confirmed by MALDI-TOF MS and MALDI-QIT-TOF MS/MS. Amino acid sequences and location of glycosylation sites were determined by MALDI-QIT-TOF MS/MS/MS. Taken together, the combination of lectin column chromatography, MALDI-TOF MS, and MALDI-QIT-TOF MS ( n ) provides an easy way for the structural estimation of glycans and the rapid analysis of glycoproteomics.  相似文献   

13.
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is combined off-line with rapid chemical quench-flow methods to investigate the pre-steady-state kinetics of a protein-tyrosine phosphatase (PTPase). PTPase kinetics are generally interrogated spectrophotometrically by the employment of an artificial, chromophoric substrate. However, that methodology places a constraint on the experiment, hampering studies of natural, biochemically relevant substrates that do not incorporate a chromophore. The mass spectrometric assay reported herein is based on the formation of a covalent phosphoenzyme intermediate during substrate turnover. This species is generated in the reaction regardless of the substrate studied and has a molecular weight 80 Da greater than that of the native enzyme. By following the appearance of this intermediate in a time-resolved manner, we can successfully measure pre-steady-state kinetics, regardless of the incorporation of a chromophore. The strengths of the mass-spectrometric assay are its uniform response to all substrates, simple and direct detection of covalent enzyme-substrate intermediates, and facile identification of enzyme heterogeneities that may affect enzymatic activity.  相似文献   

14.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) specific biomarkers have been shown to be an effective tool for identifying microorganisms. In this study, we demonstrate the feasibility of using this technique to detect the obligate intracellular bacterium Coxiella burnetii, a category B bioterrorism agent. Specific biomarkers were detected in C. burnetii Nine Mile phase I (NMI) strain purified from embryonated egg yolk sac preparations. Whole organisms were applied directly to the MALDI target. MALDI-TOF MS analysis of C. burnetii NMI grown and purified at different times and places revealed a group of unique, characteristic, and reproducible spectral markers in the mass range of 1000-25000 Da. Statistical analysis of the averaged centroided masses uncovered at least 24 peptides or biomarkers. Three biomarkers observed in the MALDI-TOF MS spectrum consistently matched proteins that had been previously described in C. burnetii, one of them being the small cell variant protein A. MALDI-TOF MS analysis of whole organisms represents a sensitive and specific option for characterizing C. burnetii isolates, especially when coupled with antigen capture techniques. The method also has potential for several applications in basic microbial research, including regulation of gene expression.  相似文献   

15.
A continuous flow micro total analysis system (micro-TAS) consisting of an on-chip microfluidic device connected to a matrix assisted laser desorption ionization [MALDI] time-of-flight [TOF] mass spectrometer (MS) as an analytical screening system is presented. Reaction microchannels and inlet/outlet reservoirs were fabricated by powderblasting on glass wafers that were then bonded to silicon substrates. The novel lab-on-a-chip was realized by integrating the microdevice with a MALDI-TOFMS standard sample plate used as carrier to get the microfluidic device in the MALDI instrument. A novel pressure-driven pumping mechanism using the vacuum of the instrument as a driving force induces flow in the reaction microchannel in a self-activating way. Organic syntheses as well as biochemical reactions are carried out entirely inside the MALDI-MS ionization vacuum chamber and analyzed on-line by MALDI-TOFMS in real time. The effectiveness of the micro-TAS system has been successfully demonstrated with several examples of (bio)chemical reactions.  相似文献   

16.
Electrospray ionization produces multiply charged molecular ions for biomolecules with molecular weights in excess of 100,000. This allows mass spectrometers with limited mass-to-charge range to extend their molecular weight range by a factor equal to the number of charges. The maximum number of observed charges for peptides and smaller proteins correlates well with the number of basic amino acid residues (Arg, Lys, His), except for disulfide-containing molecules, such as lysozyme and bovine albumin. However, reduction of disulfide linkages with 1,4-dithiothreitol (Cleland's reagent) may allow the protein to be in an extended conformation and make "buried" basic residues available for protonation to yield higher charged molecular ions by the electrospray ionization process. For larger proteins reduction of disulfide bridges greatly increases the maximum charge state, but charging of basic amino acid residues remains less efficient than for smaller proteins.  相似文献   

17.
Progress in high-throughput MALDI-TOFMS analysis, especially in proteome applications, requires development of practical and efficient procedures for the preparation of proteins and peptides in a form suitable for high acquisition rates. These methods should improve successful identification of peptides, which depends on the signal intensity and the absence of interfering signals. Contamination of MALDI samples with alkali salts results in reduced MALDI peptide sensitivity and causes matrix cluster formation (widely reported for CHCA matrix) observed as signals dominating in the range below m/z 1200 in MALDI spectra. One way to remove these background signals, especially for concentrations of peptides lower than 10 fmol/microL, is to wash matrix/sample spots after peptide cocrystallization on the MALDI plate with deionized water prior to analysis. This method takes advantage of the low water solubility of the CHCA compared to its alkali salts. We report here that the application of some ammonium salt solutions, such as citrates and phosphates, instead of deionized water greatly improves the efficiency of this washing approach. Another way to reduce matrix cluster formation is to add ammonium salts as a part of the MALDI matrix. The best results were obtained with monoammonium phosphate, which successfully suppressed matrix clusters and improved sensitivity. Combining both of these approaches-the addition of ammonium salts in the CHCA matrix followed by one postcrystallization washing step with ammonium buffer-provided a substantial ( approximately 3-5-fold) improvement in the sensitivity of MALDI-MS detection compared to unwashed sample spots. This sample preparation method resulted in improved spectral quality and was essential for successful database searching for subnanomolar concentrations of protein digests.  相似文献   

18.
We have developed a novel method for quantifying protein isoforms, in both relative and absolute terms, based on MALDI-TOF mass spectrometry. The utility of the approach is demonstrated by quantifying the alpha and beta protein isoforms of myosin heavy chain (MyHC) in human atrial tissue. Alpha-MyHC (726-741) and beta-MyHC (724-739) were identified as isoform-specific tryptic peptides. A calibration curve was constructed by plotting ion current ratios against molar ratios of the two peptides prepared synthetically. MyHC was digested by trypsin and the ion current ratio determined for the two tryptic peptides. The ion current ratio was converted to the peptide ratio and hence the isoform ratio by reference to the standard curve. The accuracy of the method was confirmed by a comparison between these results and those determined by an established method of MyHC isoform ratio determination. So that the molar ratio could be converted to absolute values, a third peptide, an analogue of the two peptides being measured, was synthesized for use as an internal standard (IS). The measured ion current ratios of synthetic alpha-MyHC (726-741), beta-MyHC (724-739), and IS peptides were used to generate standard curves. A known quantity of the IS was added to the MyHC digests. The measured ion current ratios were converted to the actual quantities of the isoform-specific peptides and hence the actual quantity of each protein isoform by reference to the standard curves. This method is of general applicability, especially when isoform quantification is required.  相似文献   

19.
A novel two-dimensional liquid-phase separation method was developed that is capable of resolving large numbers of cellular proteins. The proteins are separated by pI using isoelectric focusing in the first dimension and by hydrophobicity using nonporous reversed-phase HPLC in the second dimension (IEF-NP RP HPLC). Proteins were mapped using original software in order to create a protein pattern analogous to that of the 2-D PAGE image. RP HPLC peaks are represented by bands of different intensity in the 2-D image, according to the intensity of the peaks eluting from the HPLC. Each peak was collected as the eluent of the HPLC separation in the liquid phase. The proteins collected were identified using proteolytic enzymes, MALDI-TOF MS and MSFit database searching. Using IEF-NP RP HPLC, approximately 700 bands were resolved in a pI range from 3.2 to 9.5 and 38 different proteins with molecular weights ranging from 12,000 to 75,000 were identified. In comparison to a 2-D gel separation of the same human erythroleukemia cell line lysate, the IEF-NP RP HPLC produced improved resolution of low mass and basic proteins. In addition, the proteins remained in the liquid phase throughout the separation, thus making the entire procedure highly amenable to automation and high throughput. It is demonstrated that IEF-NP RP HPLC provides a viable alternative to the 2-D gel separation method for the screening of protein profiles.  相似文献   

20.
W Tong  A Link  J K Eng  J R Yates 《Analytical chemistry》1999,71(13):2270-2278
A method to directly identify proteins in complex mixtures by solid-phase microextraction (micro-SPE)/multistep elution/capillary electrophoresis (CE)/tandem mass spectrometry (MS/MS) is described. A sheathless liquid-metal junction interface is used to interface CE and electrospray ionization MS/MS. A subfemtomole detection limit is achieved for protein identification through database searching using MS/MS data. The SPE serves as a semiseparation dimension using an organic-phase step-elution gradient in combination with the second separation dimension for increased resolving power of complex peptide mixtures. This approach improves the concentration detection limit for CE and allows more proteins in complex mixtures to be identified. A 75-protein complex from yeast ribosome is analyzed using this method and 80-90% of the proteins in the complex can be identified by searching the database using the MS/MS data from a complete analysis. This multidimensional CE/MS/MS methodology provides an alternative to multidimensional liquid chromatography/MS/MS for direct identification of small amounts of protein in mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号