首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The theory and algorithms of the proposed technique have been presented in Part I of this two-paper set. In Part II of this two-paper set, the proposed technique is evaluated by considerable simulation cases simulated by the Matlab/Power system Blockset simulator. For the proposed fault detector, the trip time achieved can be up to 3.25 ms and the average value of trip times is about 8 ms for both permanent and arcing faults on transmission lines. For the proposed fault locator, the accuracy can be up to 99.99% and the error does not exceed 0.45%. Moreover, the proposed arcing fault discriminator can discriminate between arcing and permanent faults within four cycles after fault inception. It has proven to be an effective tool to block reclosing on the permanent faults in the computer simulations. The simulation results also demonstrate that the presented extended discrete Fourier transform algorithm eliminates effectively the error caused by exponentially decaying dc offset on fundamental and harmonic phasor computations. Finally, a test case using the real-life measured data proves the feasibility of the proposed technique.  相似文献   

2.
A WAMS (wide-area measurement/monitoring system)/PMU (phasor measurement unit)-based fault location technique is proposed in this paper. The technique uses synchronized fault voltages of two nodes of the faulted line and their neighboring nodes for fault location. Based on these fault node voltages measured by PMUs, line currents between these nodes can be calculated. Then, node injection currents at two terminals of the faulted line are formed from the line currents. Based on the calculated fault node injection currents, fault node can be deduced or fault location in transmission lines can be calculated accurately. Fault location formulas are derived in full details. Case studies on IEEE-14-bus system and a testing network with 500 kV transmission lines including ATP/EMTP simulations are given to validate the proposed technique. Various fault types and fault resistances are also considered.  相似文献   

3.
基于PMU的多端传输线路故障定位新方法   总被引:2,自引:0,他引:2  
提出一种基于PMU的多端传输线路故障定位新方法;该算法基于线路分布参数线路模型和同步附加正序分量,通过故障区域判断指标,准确找到故障支路,然后将非故障支路化简合并,应用双端测距算法进行高精度的故障测距.本算法的测距不受故障类型、故障阻抗、系统阻抗及负荷等的影响,PSCAD仿真结果验证了所提算法的正确性和高精度性.  相似文献   

4.
This paper presents a new fault location algorithm based on phasor measurement units (PMUs) for series compensated lines. Traditionally, the voltage drop of a series device is computed by the device model in the fault locator of series compensated lines, but when using this approach errors are induced by the inaccuracy of the series device model or the uncertainty operation mode of the series device. The proposed algorithm does not utilize the series device model and knowledge of the operation mode of the series device to compute the voltage drop during the fault period. Instead, the proposed algorithm uses two-step algorithm, prelocation step and correction step, to calculate the voltage drop and fault location. The proposed technique can be easily applied to any series FACTS compensated line. EMTP generated data using a 30-km 34-kV transmission line has been used to test the accuracy of the proposed algorithm. The tested cases include various fault types, fault locations, fault resistances, fault inception angles, etc. The study also considers the effect of various operation modes of the compensated device during the fault period. Simulation results indicate that the proposed algorithm can achieve up to 99.95% accuracy for most tested cases  相似文献   

5.
An adaptive fault detection/location technique based on a phasor measurement unit (PMU) for an EHV/UHV transmission line is presented. A fault detection/location index in terms of Clarke components of the synchronized voltage and current phasors is derived. The line parameter estimation algorithm is also developed to solve the uncertainty of parameters caused by aging of transmission lines. This paper also proposes a new discrete Fourier transform (DFT) based algorithm (termed the smart discrete Fourier transform, SDFT) to eliminate system noise and measurement errors such that extremely accurate fundamental frequency components can be extracted for calculation of fault detection/location index. The EMTP was used to simulate a high voltage transmission line with faults at various locations. To simulate errors involved in measurements, Gaussian-type noise has been added to the raw output data generated by EMTP. Results have shown that the new DFT based method can extract exact phasors in the presence of frequency deviation and harmonics. The parameter estimation algorithm can also trace exact parameters very well. The accuracy of both new DFT based method and parameter estimation algorithm can achieve even up to 99.999% and 99.99% respectively, and is presented in Part II. The accuracy of fault location estimation by the proposed technique can achieve even up to 99.9% in the performance evaluation, which is also presented in Part II  相似文献   

6.
This paper deals with the application of wavelet transforms for the detection, classification and location of faults on transmission lines. A Global Positioning System clock is used to synchronize sampling of voltage and current signals at both the ends of the transmission line. The detail coefficients of current signals of both the ends are utilized to calculate fault indices. These fault indices are compared with threshold values to detect and classify the faults. Artificial Neural Networks are employed to locate the fault, which make use of approximate decompositions of the voltages and currents of local end. The proposed algorithm is tested successfully for different locations and types of faults.  相似文献   

7.
A new fault location technique for two- and three-terminal lines   总被引:4,自引:0,他引:4  
A method for the computation of fault location in two- and three-terminal high voltage lines is presented. It is based on digital computation of the three-phase current and voltage 60/50 Hz phasors at the line terminals. The method is independent of fault type and insensitive to source impedance variation or fault resistance. Furthermore, it considers the synchronization errors in sampling the current and voltage waveforms at the different line terminals. The method can be used online following the operation of digital relays or offline using data transferred to a central processor from digital transient recording apparatus. The authors start with a two-terminal line to explain the principles and then present the technique for a three-terminal line. The technique was first tested using data obtained from a steady-state fault analysis program to evaluate the convergence, observability, and uniqueness of the solution. The technique was then tested using EMPT-generated transient data. The test results show the high accuracy of the technique  相似文献   

8.
Conventional fault location schemes do not take loads and their variable impedance behavior into account. This leads to unacceptable errors in the case of radial transmission lines with loads, commonly found at the 120 kV and lower levels. A novel method for such lines is proposed. The fault distance is obtained by solving an implicit equation. Single-phase-to-ground, phase-to-phase, and three-phase-to-ground faults are treated. The effect of the scheme is illustrated by simulated faults  相似文献   

9.
A new method for fault location on three-terminal transmission lines is described in this paper. Through this method, the faulty line branch is determined and the fault point located in a reliable and simple manner. For this, to reduce mathematical errors, a complete line model including the various characteristics of the network is used and a simple calculation method is applied, based on a new concept referred to as the ‘branch factor’. The method only uses the main components (50/60 Hz) of fault and prefault voltage values measured at the three terminals of the transmission line. Moreover, this method is independent of the fault and prefault current, type of fault and fault resistance, as well as the synchronization of recording devices located at the three terminals of the transmission line, and the prefault conditions. This paper also reviews the sensitivity of this method to errors in input data.  相似文献   

10.
A new fault location principle using one terminal voltage and current data for EHV transmission lines is described in this paper, which is based on distributed parameter line model, breaking through the traditional single-ended fault location ideas. The voltage profile along the healthy line could be calculated using single-ended voltage and current data; however, the voltage profile behind the fault point is not true for a faulted line. Even though, notice the fact that the norm value of derivative function of the "fictitious profile" to distance is minimum at fault point, based on which the fault location function is constructed. The numerical algorithm is also described; this principle is proved by EMTP simulations to be immune to fault resistance, fault types, and fault inception angle. Theoretically, the accuracy of the principle is proportional to the sampling rate of the locator.  相似文献   

11.
一种基于参数检测的双端故障测距算法   总被引:2,自引:1,他引:2  
提出了一种基于参数检测的双端故障测距算法,仅需双端系统的电气量,通过三相解耦推导出故障测距的解析表达式.该算法能计算出双端系统的非同步角和随着环境影响变化的线路参数,克服了传统故障测距的弊端,不存在伪根问题、算法简单实用、计算量小,无需搜索和迭代,鲁棒性强.该算法也不受故障类型、过渡电阻等因素的影响.高压输电线路采用分布式参数模型,通过ATP-EMTP对该算法进行了仿真验证.  相似文献   

12.
This paper presents a new methodology for monitoring, in real-time, the conditions of the insulation of an power transmission line, detecting and locating anomalies in its operation, before the supply of power is interrupted, thus allowing for preventive maintenance. This method uses the harmonic decomposition of the leakage current to analyze the condition of line insulation and employs a neural network to locate the fault. Experimental measurements were obtained to validate the simulated results.  相似文献   

13.
The authors comment on the paper by C.-H. Kim et al. (see ibid., vol.17, p.921-9, 2002). They ask the authors to describe the circumstances for 154 kV system arcing faults. They also comment on the fault inception angle, wavelet selection, and the advantages of the wavelet transform in relation to its use.  相似文献   

14.
This paper presents a new adaptive fault protection scheme for transmission lines using synchronized phasor measurements. The work includes fault detection, direction discrimination, classification, and location. Both fault-detection and fault-location indices are derived by using two-terminal synchronized measurements incorporated with distributed line model and modal transformation theory. The fault-detection index is composed of two complex phasors and the angle difference between the two phasors determines whether the fault is internal or external to the protected zone. The fault types can be classified by the modal fault-detection index. The proposed scheme also combines online parameter estimation to ensure protection scheme performance and achieve adaptive protection. Extensive simulation studies show that the proposed scheme provides a fast relay response and high accuracy in fault location under various system and fault conditions. The proposed method responds very well with regards to dependability, security, and sensitivity (high-resistance fault coverage).  相似文献   

15.
基于小波变换的T型线路故障测距新算法   总被引:3,自引:0,他引:3  
针对当前多分支线路故障测距中方法较复杂,精确度不够高的不足,提出一种基于小波变换的T型输电线路精确故障定位算法.该算法利用电流行波到达T接线三端时间差与故障点距离T接线三端长度差的关系,只需初始行波电流信息即可确定故障支路,并对故障定位.在T节点附近不存在故障测距死区,且不受故障类型、分布电容、行波速度等因素的影响.大量Matlab仿真结果表明,该算法简单精确,能够满足故障定位的要求.  相似文献   

16.
针对当前多分支线路故障测距中方法较复杂,精确度不够高的不足,提出一种基于小波变换的T型输电线路精确故障定位算法。该算法利用电流行波到达T接线三端时间差与故障点距离T接线三端长度差的关系,只需初始行波电流信息即可确定故障支路,并对故障定位。在T节点附近不存在故障测距死区,且不受故障类型、分布电容、行波速度等因素的影响。大量Matlab仿真结果表明,该算法简单精确,能够满足故障定位的要求。  相似文献   

17.
提出了一种新的单端故障测距的方法,根据故障发生后的故障附加网络,利用单端故障电压电流计算沿线故障电压对距离的导数,然后再求其范数在线路上的分布,根据其分布特点确定故障点的位置,实现测距。仿真证明该新方法具有较高的准确度和稳定性。  相似文献   

18.
提出了一种新的单端故障测距的方法,根据故障发生后的故障附加网络,利用单端故障电压电流计算沿线故障电压对距离的导数,然后再求其范数在线路上的分布,根据其分布特点确定故障点的位置,实现测距.仿真证明该新方法具有较高的准确度和稳定性.  相似文献   

19.
平行双回线两点故障测距算法的研究   总被引:1,自引:1,他引:1       下载免费PDF全文
以分布参数作为高压输电线路的模型,对平行双回线一回线上两点异相故障及两回线上两点故障提出了一种新的测距算法。该方法利用线路两端电压、电流的正序和负序分量,不需选代计算,并适用于一点故障情况。其测距精度不受系统阻抗变化、过渡电阻及不同步采样数据的影响。仿真计算表明该方法有效  相似文献   

20.
基于抗差估计理论的输电线路故障定位新型算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对采样中出现的粗差,提出了一种基于抗差估计理论的故障定位算法。通过等价权原理,将抗差估计理论和最小二乘法有机的结合起来,有效地避免了粗差的影响。算法采用微分方程作为数学模型,并利用相模变换解耦;然后,在模域采用输电线路双端信号列写故障点方程;最后,用抗差最小二乘法求解。经过RTDS实验表明,该算法结果稳定,具有很好的准确性和抗干扰能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号