首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
钒渣钙化焙烧参数对钒浸出率的影响   总被引:2,自引:0,他引:2  
在分析钒渣(V2O3 8.07%)钙化焙烧过程反应机理的基础上,采用钙化焙烧-酸浸法研究了钙化焙烧过程中CaO/V2O3(质量比)、焙烧温度、焙烧时间对钒浸出率的影响. 结果表明,焙烧温度在600~900℃之间时,V2O5等钒氧化物可与CaO发生反应,形成以CaV2O6, Ca3V2O8, CaV3O7为主的钒酸钙. 当CaO/V2O3由0.48提高到约1.125时,钒浸出率由55.3%提高到69.2%,当CaO/V2O3>1.125时,钒浸出率开始下降. 焙烧温度由750℃提高到825℃时,钒浸出率由56.3%提高到69.7%,温度进一步升高,物料开始烧结,浸出率逐渐下降. 随焙烧时间延长,钒浸出率逐渐提高,2 h后达最大;时间继续增加,钒浸出率会因物料间发生二次反应而下降.  相似文献   

2.
采用高钙钒比钒渣[钙钒比ω(CaO)/ω(V2O5) 0.32]在适宜钠化焙烧条件下的熟料,通过单因素控制法,进行水浸出和碳酸铵浸出实验. 对比钒渣熟料两种浸出的适宜条件和浸出效果,分析其特点. 对浸出前后的钒渣进行物相分析,考察和对比两种浸出的浸出机理. 结果表明,钒渣熟料水浸适宜条件为,温度90℃,时间30 min,液固比8.0 mL/g. 此条件下的钒浸出率为89.4%;钒渣熟料碳酸铵浸出适宜条件为,温度60℃,时间20 min,碳酸铵含量12%. 此条件下钒的浸出率为90.2%;与熟料水浸相比,碳酸铵浸出钒的浸出率提高0.8%,浸出温度下降30℃,浸出时间缩短10 min;熟料水浸时只有水溶性钒酸盐被浸出,而碳酸铵浸出时水溶性钒酸盐和部分水不溶性钒酸盐都被浸出.  相似文献   

3.
蒋霖  伍珍秀 《现代化工》2015,(3):87-89,91
利用富氧焙烧-碱浸提钒工艺分离回收钒铬还原渣中的钒、铬。探讨了焙烧与浸出条件对钒、铬浸出率的影响。结果表明:在富氧气氛下,适当提高焙烧温度和延长焙烧时间有利于低价钒的氧化,从而提高钒的浸出率;选用Na OH作为浸出介质,有利于钒的浸出,且铬的浸出很少;适当提高碱液浓度和延长浸出时间效果更佳;浸出温度对钒、铬的浸出影响较小。钒铬还原渣在880℃下富氧焙烧2 h后经3 mol/L Na OH溶液在液固比为4∶1,温度为70℃下浸出1 h,钒的浸出率达92.36%,铬的浸出率小于6%。含钒碱浸液经酸性铵盐沉钒方式回收其中的钒,铬渣可另作他用。  相似文献   

4.
石煤灰渣二次焙烧稀酸浸出提钒工艺条件   总被引:2,自引:0,他引:2  
为获得石煤灰渣二次焙烧稀酸浸出提钒工艺的优化条件,对该工艺钒浸出率的影响因素进行了实验研究.结果表明,二次焙烧温度、二次焙烧时间、熟料粒径、酸浸温度、硫酸浓度5种因素对钒浸出率的影响较大,酸浸液固体积质量比、酸浸时间的影响较小.最佳工艺条件为:二次焙烧温度850℃,二次焙烧时间1h,熟料粒径180μm以下,常温(18℃)酸浸,硫酸浓度0.36mol/L,液固比2~2.5mL/g,浸出时间0.25h.在此条件下,石煤灰渣钒浸出率可达81%以上.  相似文献   

5.
利用复合添加剂焙烧、低浓度酸浸出法对石煤矿进行提钒研究,考察了焙烧、浸出两个过程中各种工艺参数对浸出率的影响。实验结果表明,适宜的焙烧、浸出工艺条件为:复合添加剂中添加剂硫酸钠、氯化钠、碳酸钠的最佳质量比为7∶1∶11,焙烧温度为750℃,焙烧时间为2.5 h,浸出温度为50℃,浸出时间为5 h。最佳工艺条件下钒的浸出率可达81.9%,明显高于传统的钠法焙烧工艺。  相似文献   

6.
钒铬还原渣碱浸提钒工艺及其动力学   总被引:2,自引:0,他引:2  
采用常压下空气氧化-碱浸工艺,对钒冶炼的钒铬还原渣进行提钒. 通过正交实验考察了碱浓度、浸出温度、液固比对钒浸出率的影响,研究了钒的浸出动力学. 结果表明,最佳条件为碱浓度100 g/L、浸出温度100℃、液固比4 mL/g、浸出时间1 h. 该条件下钒浸出率最高达98%. 钒的浸出过程符合核收缩模型,受扩散步骤控制,表观活化能为11.04 kJ/mol.  相似文献   

7.
张晓刚  高永波  徐强  刘代俊  龙华  唐瑜 《应用化工》2013,42(6):1026-1028,1032
石煤钒矿经过钙化焙烧后,用氢氧化钠溶液浸取提钒。研究了钒矿的粒度、焙烧时间、焙烧温度、添加剂种类、氢氧化钠用量、液固比、浸取时间、浸取温度等因素对浸出率的影响。结果表明,在钒矿的粒径为100~200目,添加剂碳酸钙用量为5%,温度900℃的条件下焙烧2 h,液固比3∶1(质量比),氢氧化钠用量15%,碱浸温度103℃(微沸),碱浸时间为3 h的条件下,钒的浸出率可达到90%以上。  相似文献   

8.
以某公司制钒废水产生的钒铬共沉渣为原料,采用焙烧—酸浸—水浸工艺研究钒铬共沉渣中钒铬的浸出率,考察了焙烧温度、焙烧剂用量、硫酸用量、固液比、酸浸温度对钒铬浸出率的影响。得到适宜工艺条件:焙烧温度为300℃、碳酸钠用量为钒铬共沉渣质量的10%、硫酸与钒铬共沉渣的质量比为1.5、水与钒铬共沉渣的质量比为5、酸浸温度为80℃。在此条件下,钒的浸出率可达90%,铬的浸出率可达60%。  相似文献   

9.
钒矿石活化焙烧-酸浸新工艺的研究   总被引:2,自引:0,他引:2  
对河南某钒矿进行了活化焙烧-酸浸实验,系统考察了添加剂种类与用量、焙烧温度、焙烧时间、浸取酸度、液固比、浸取温度及时间对钒浸取率的影响。实验结果表明:焙烧过程中,采用氧化钙为添加剂,控制添加量为10%,850~900℃下焙烧3h,矿样的活化效果较好;酸浸过程中,硫酸酸度为5%,液固比为2.5∶1,70~80℃,浸出3h的条件下,钒的浸出率最高,可达80%以上。  相似文献   

10.
对我国某地石煤发电飞灰进行碱浸提钒实验研究,飞灰中的钒主要以V(V)形态弥散于硅、铝氧化物中. 结合钒的赋存形式,考察了反应时间、液固比、碱浓度及温度对钒浸出率的影响. 结果表明,钒浸出率与四因素均呈正比关系. 在搅拌转速500 r/min、180℃、浸出时间3 h、液固比5 mL/g及NaOH浓度200 g/L的最佳工艺条件下,钒浸出率可达85%以上. 浸出液中Al2O3, K, Fe含量分别小于500, 420与9 mg/L. 浸出液返回浸出体系,可充分利用浸出液中富余的碱进一步富集溶液中的钒.  相似文献   

11.
对钒渣空白焙烧-碱浸提钒,研究了钒渣中钒的转化和溶出规律. 结果表明,焙烧过程中渣中钒铁尖晶石FeV2O4中的钒逐步氧化成VO2和V2O5,并优先与Ca, Mn和Mg等形成钒酸盐;浸出分为低温浸出和高温浸出,低于180℃只能浸出钒酸盐和钒氧化物,高于180℃可浸出固溶在硅酸钙中的钒,钒浸出率达97.63%.  相似文献   

12.
用(NH4)2SO4焙烧分解碳素铬铁冶炼渣,提取有价金属,考察了焙烧温度、硫酸铵用量和焙烧时间对有价金属浸出率及过程相变的影响. 结果表明,焙烧过程中250~435℃间失重达65.5%,主要为NH3,H2O,SO3释放及(NH4)2SO4挥发. 优化的焙烧条件为(NH4)2SO4与铝镁渣质量比5:1、焙烧温度350℃,焙烧时间3.5 h. 有价金属转变为其相应的硫酸金属铵盐,且与(NH4)2SO4分解产物共存;该条件下的焙烧料90℃下浸出1 h,Mg, Al, Cr, Fe的浸出率分别为92%, 80%, 82%, 93%. 推测新生成的硫酸金属铵盐的片状聚集体阻碍碳素铬铁渣内部完全被(NH4)2SO4侵蚀.  相似文献   

13.
Long-term high temperature in conventional vanadium extraction process would cause particles to be sintered and wrapped, thus reducing extraction efficiency of vanadium. Based on the purpose of directional conversion and process intensification, this work proposed a combination of low temperature sodium roasting and high efficiency selective oxidation leaching in vanadium extraction. The investigation of the reaction mechanism suggested that the structure of vanadium slag was changed by roasting, which also caused the fracture of spinel. The addition of MnO2 promoted the directional oxidation of low-valent vanadium into high valence. It also found that Na2S2O8 could oxidize low-valent vanadium effectively in leaching. The leaching efficiency of vanadium reached 87.74% under the optimum conditions, including a roasting temperature of 650 ℃, a roasting time of 2.0 h, a molar ratio of sodium-to-vanadium of 0.6, a MnO2 (roasting additive) dosage of 5 wt% and a Na2S2O8 (leaching oxidant) dosage of 5 wt%. This percentage is 7.18% higher than that of direct roasting-andleaching under the same conditions.  相似文献   

14.
通过对铝系钒铁炉渣碳酸钠焙烧-水浸全过程的矿物分析、热力学计算及对比实验,研究了炉渣中钒、铝同步转化、溶出的机理与规律. 结果显示,焙烧进程中渣中镁铝尖晶石MgO×Al2O3相、CaO×2Al2O3相逐渐消失,MgO相生成,并生成碱熔相Na2O×Al2O3和钒酸盐. 随焙烧温度及时间增加,Na2O×Al2O3和钒酸盐相明显增多,钒、铝溶出率增加. 焙烧熟料经水浸后,液相呈碱性,钒、铝分别以可溶性钒酸钠和铝酸钠的形式进入水相,固相残留物为少量未反应的镁铝尖晶石及新生成的MgO和Ca(OH)2. 在磨矿粒度<75 mm、配碱系数1.0、焙烧温度1000℃及焙烧时间4 h的优化条件下,钒的溶出率可达90%,铝的溶出率可达75%.  相似文献   

15.
Long-term high temperature in conventional vanadium extraction process would cause particles to be sintered and wrapped, thus reducing extraction efficiency of vanadium. Based on the purpose of directional conversion and process intensification, this work proposed a combination of low temperature sodium roasting and high efficiency selective oxidation leaching in vanadium extraction. The investigation of the reaction mechanism suggested that the structure of vanadium slag was changed by roasting, which also caused the fracture of spinel. The addition of MnO2 promoted the directional oxidation of low-valent vanadium into high valence. It also found that Na2S2O8 could oxidize low-valent vanadium effectively in leaching. The leaching efficiency of vanadium reached 87.74% under the optimum conditions, including a roasting temperature of 650 °C, a roasting time of 2.0 h, a molar ratio of sodium-to-vanadium of 0.6, a MnO2 (roasting additive) dosage of 5 wt% and a Na2S2O8 (leaching oxidant) dosage of 5 wt%. This percentage is 7.18% higher than that of direct roasting-and-leaching under the same conditions.  相似文献   

16.
实验研究了采用钾系与钠系亚熔盐反应介质提取含钒钢渣中钒的工艺与机理. 结果表明,亚熔盐体系对含钒钢渣的提钒机理是通过分解硅酸二钙、硅酸三钙、铁酸钙等钒的固溶相,使钒以可溶性钒酸盐形式溶出,钢渣中高CaO对钒溶出的负面影响可通过调整浸出液中氢氧化钠(钾)浓度避免. 与传统工艺相比,亚熔盐体系反应温度由850℃降至220~240℃,反应时间由4~6 h降至1~2 h,在显著降低能耗、提高效率的同时,钒的一次转化率钠系可达85%,钾系可达97%;且在钾系亚熔盐氧化性气氛中实现钒、铬共提,基本实现了含钒钢渣中钒的高效清洁提取.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号