首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
武都碾压混凝土重力坝深层抗滑稳定破坏试验研究   总被引:2,自引:0,他引:2  
通过建立武都碾压混凝土重力坝典型坝段坝基的地质概化模型,采用三维地质力学模型试验方法对其天然地基条件下的深层抗滑稳定问题进行系统研究.试验对典型坝段的地形、地质条件,包括岩体、断层、节理等主要地质缺陷的特征进行模拟,根据岩体力学参数及软弱结构面力学参数,研制出适合武都工程地质条件的模型材料,采用超载法进行破坏试验研究.根据试验结果,分析坝体、坝基以及主要断层的变形特征,探讨坝与地基整体失稳的破坏过程、破坏形态和破坏机制,揭示影响坝基稳定的控制性因素,获得典型坝段的滑动破坏机制与稳定安全系数.在此基础上,对坝基加固处理措施进行讨论,为典型坝段的深层抗滑稳定安全评价与基础加固处理设计提供科学依据.  相似文献   

2.
基于有限元法的混凝土重力坝抗滑稳定分析   总被引:1,自引:0,他引:1  
抗滑稳定分析是混凝土重力坝设计中一项十分重要的内容,其目的是核算坝体在各种工况作用下沿坝基面或沿地基深层软弱结构面的抗滑稳定安全性。利用有限元法计算坝体的应力和位移,较精确地考虑了坝体所受到的各种荷载及复杂的地质情况,并可以基于此计算结果分析坝体的抗滑稳定性,为坝工设计提供可靠的指导依据。  相似文献   

3.
白鹤滩水电站上坝线左拱座楔形体安全性能分析   总被引:2,自引:0,他引:2  
 白鹤滩水电站上坝线左拱座底部岩体被陡倾断层切割成多个楔形体,坐落于拱坝底部及其下游,其稳定性直接影响到坝基和拱坝的安全。考虑楔形岩体各滑动面上复杂的渗透压力进行拱坝及楔形体安全性能分析,在FLAC3D中编制多种形式水压力施加程序,并以概念模型进行验证。根据数值计算结果,通过分析所选取结构面的典型节点位移变化,研究楔形体的稳定安全度、面安全系数及超载条件下屈服扩展状况,对其安全性能进行综合分析。研究表明:楔形体滑面考虑裂隙水压力和扬压力作用下,底部LS331滑面的安全度低于坝基接触面,上游右岸坝踵处开始出现局部屈服的超载安全系数为1.5,楔形体不能正常运行的超载安全系数为3.1,坝基不能正常运行的超载安全系数为3.3,坝基岩体整体破坏的超载安全系数为5.5。  相似文献   

4.
本文介绍了大坝基岩应变的原型研究方法和结果,同时反演出基岩的有效弹性模量,并计算了应力。文中采用逐步回归分析法建立了基岩应变的数学模型,并据此进行了大坝的稳定分析和安全评价。  相似文献   

5.
Foundation stability is one of the most important factors influencing the safety of a concrete dam and has been one of the key technical problems in the design of the Three-Gorges Project. The major difficulties lie in two facts. The first one is that the dam foundation consists of rock blocks, with joints and so-called ‘rock bridges’ and the gently dipping joints play a critical role in the foundation stability against sliding. The second one is that, even in the regions where the gently dipping fractures are most developed, there are no through-going sliding paths in the rock mass due to the existence of the rock bridges; so the dam could slide only if some of the rock bridges fail, so as to create at least one through-going sliding path. To date, due to unavoidable shortcomings in physical and numerical modeling techniques, there is not a single satisfactory method to solve the problem completely. For this reason, the integration of multiple methods was adopted in this study and proved to be an effective and reliable approach.This Part I paper describes work based on the results of geological investigations and mechanical tests, relating to the geological and geomechanical models of the Three-Gorges Dam, and then a systematic study procedure was developed to carry out the stability assessment project. Then, 2D and 3D physical model tests for some critical dam sections were performed. In the physical tests, based on similarity theory, various testing materials were selected to simulate the rock, concrete, fracture and rock bridge. The loading and boundary conditions were also modeled to meet the similarity requirements. The failure mechanism was derived through a progressive overloading that simulated the upstream hydrostatic pressure applied to the dam, and the factor of safety was defined as the ratio between the maximum external load inducing the start of sliding instability of the dam foundation and the upstream hydrostatic load. The experimental results indicated that the stability of the Three-Gorges Dam foundation satisfies the safety requirements. Nevertheless, further discussions demonstrated that because of the incomplete definition of factor of safety adopted in the physical model tests, it is also essential to study the stability of the Three-Gorges Dam foundation using numerical modeling, which will be presented in the companion Part II paper.  相似文献   

6.
在工程荷载和渗透水压的共同作用下,水闸工程坝基岩体强度和变形参数极易产生弱化,这对工程的安全建设和运行极其不利.针对大藤峡闸坝基岩的多层单斜和软弱夹层长大密集等不利地质条件,有必要对泄水闸坝段基础的滑移破坏模式做进一步研究.本文采用综合法地质力学模型试验,对大藤峡典型坝段闸坝与地基的整体稳定性进行破坏试验研究.通过超载...  相似文献   

7.
Sliding in a dam foundation along potential sliding paths is generally caused by two kinds of external factors: one is the overloading of the designed upstream hydrostatic load due to flooding; and the other is the gradual degradation of the shear strength of joints due to seepage, deformation, damage, and geochemical reactions between water and joint surface minerals. Based on the conceptualized geomechanical model of the Three-Gorges Dam, described in the Part I paper, in this Part II paper the limit equilibrium method and finite element method are used to study the effects of gradual degradation of the shear strength of joints on the stability of the dam foundation. The numerical modeling focuses on the stability conditions of the no. 3 powerhouse-dam section which are estimated to be the most critical. The constraint influences from the adjacent no. 2 and no. 4 powerhouse-dam sections are also included. The failure mechanisms, factors of safety and critical displacements of these dam sections are derived numerically as the measures for stability evaluation. The factor of safety is defined as the ratio between the combined shear strength of joints and intact rock bridges, and the mean shear stress along potential sliding path required for limit equilibrium under the designed external loads. All the results obtained from these different numerical models, together with the results of physical model tests as presented in Part I, are compared in this paper. The comparisons show that both the numerical modeling and physical modeling results support each other and demonstrate the stability of the Three-Gorges Dam foundation as designed. Nevertheless, considering the overall engineering and social–economical importance of the Three-Gorges Dam complex, some additional treatment and reinforcement measures are recommended in this paper.  相似文献   

8.
高拱坝坝肩坝基整体稳定地质力学模型试验研究   总被引:12,自引:11,他引:12  
锦屏一级水电站是雅砻江干流上的重要梯级电站。工程主要开发任务是发电,同时还兼有拦沙、防洪、蓄能作用。该工程大坝为混凝土双曲拱坝,最大坝高305m,为目前世界上最高拱坝。坝址区地质构造复杂,两岸谷坡为近千米的高陡边坡,两坝肩岩体内存在断层、煌斑岩脉、层间挤压带、深部裂隙等各类软弱结构面,对拱坝坝肩坝基稳定带来不利影响。采用三维整体地质力学模型试验研究方法,研究了锦屏一级高拱坝坝肩坝基的整体稳定性。试验中充分考虑了影响坝肩坝基稳定的各种因素,既考虑拱坝上游超载情况,同时还重点模拟两坝肩岩体中软弱结构面强度弱化的影响,为此研制了适合该工程的变温相似材料及试验模拟新技术,并在一个模型上进行了强度储备与超载相结合的综合法试验。通过试验获得了坝肩坝基的变形及分布特征、失稳的破坏形态和破坏机理,确定了拱坝坝肩坝基整体稳定安全度为4.7~5.0,评价了工程的安全性,并针对坝肩的薄弱环节提出了加固处理措施建议。  相似文献   

9.
This paper presents the complete experimental study on the Geo-Mechanical Model of Jinping high arch dam to observe the deformation and study the stability of the dam abutment and foundations of the Jinping first stage hydropower project. The model considers various factors influencing the stability of dam abutment and foundation during the test, which includes overloading and strength-decreasing of weak structural planes in the rock mass of the dam foundation. A temperature-analogue material is employed to simulate the decreasing strength of the weak structural planes. The temperature-analogue material and model testing technique are developed for the first time. Secondly, the comprehensive method that considers both overloading and strength-decreasing is applied to the model successfully. Deformation characteristics, failure patterns and mechanisms of the dam abutment and foundation are achieved. The safety evaluation based on the experimental model indicates that the whole stability safety factor of the dam abutment and foundation is 4.7–5.0.  相似文献   

10.
Combined with the actual project, this paper carries out a nonlinear finite element analysis on 2 groups, 6 short-limbed shear walls, through the finite element calculation software ANSYS. The stress-strain relation of the models, and the effects of the type of sections and the axial compression ratios on the models can be obtained, providing a reference for future design. __________ Translated from Journal of Wuhan University of Technology, 2007, 29 (Suppl. II): 118-123 [译自: 武汉理工大学学报]  相似文献   

11.
Three shaking table model tests were conducted with a geometrical scale of 1:10 using a large-scale laminar shear box to investigate the reinforcement effects of compacted gravel column-net composite foundation and cement fly-ash gravel (CFG) column-net composite foundation on the saturated silty soil along the Beijing-Shanghai High Speed Railway. The research results indicate that the increase in excess pore water pressure can be restrained effectively by the compacted gravel column-net composite foundation to improve the anti-liquefaction ability of the ground, and that shear displacement of the ground can be reduced greatly by the compacted gravel column-net and CFG column-net composite foundations to improve the capability of resisting shear displacement of ground. Furthermore, the amplifying of response acceleration, induced by foundation liquefaction, and the settlement of foundation and subgrade can be reduced greatly by the compacted gravel column-net and CFG column-net composite foundations to improve the aseismatic property of the foundation and subgrade. __________ Translated from Journal of Southwest Jiaotong University (Natural Science Edition), 2006, 41(2): 190–196 [译自: 西南交通大学学报 (自然科学版)]  相似文献   

12.
The static performance of arch dams during construction and reservoir impoundment is assessed taking into account the effects of uncertainties presented in the model properties as well as the loading conditions. Dez arch dam is chosen as the case study; it is modeled along with its rock foundation using the finite element method considering the stage construction. Since previous studies concentrated on simplified models and approaches, comprehensive study of the arch dam model along with efficient and state-of-the-art uncertainty methods are incorporated in this investigation. The reliability method is performed to assess the safety level and the sensitivity analyses for identifying critical input factors and their interaction effects on the response of the dam. Global sensitivity analysis based on improved Latin hypercube sampling is employed in this study to indicate the influence of each random variable and their interaction on variance of the responses. Four levels of model advancement are considered for the dam-foundation system: 1) Monolithic dam without any joint founded on the homogeneous rock foundation, 2) monolithic dam founded on the inhomogeneous foundation including soft rock layers, 3) jointed dam including the peripheral and contraction joints founded on the homogeneous foundation, and 4) jointed dam founded on the inhomogeneous foundation. For each model, proper performance indices are defined through limit-state functions. In this manner, the effects of input parameters in each performance level of the dam are investigated. The outcome of this study is defining the importance of input factors in each stage and model based on the variance of the dam response. Moreover, the results of sampling are computed in order to assess the safety level of the dam in miscellaneous loading and modeling conditions.  相似文献   

13.
溪洛渡特高拱坝建设的岩石工程关键技术   总被引:1,自引:0,他引:1  
 通过各设计阶段对溪洛渡特高拱坝岩石工程关键技术问题的不断深入研究,使得拱坝体型和结构设计很好地适应坝址地形地质条件;面对河床坝段基础地质条件的变化,通过建基面扩大开挖和上下游贴角设计,使得拱坝和基础相互协调,改善坝体和地基应力条件。三维地质力学模型试验和有限元分析表明,溪洛渡特高拱坝和基础具有良好的工作性态。监测成果表明,拱坝和基础实际工作性态符合规律。基于全寿命周期理论的溪洛渡“数字大坝”的建设与实践,为施工过程控制和决策提供了有力支持,进一步保证了拱坝在施工期和运行期各阶段的工作性态满足设计要求,保障了拱坝的安全可靠。  相似文献   

14.
采用三维地质力学模型超载法试验,对立洲拱坝的整体稳定性进行研究,在模型中充分反映断层、层间剪切带、裂隙密集带及长大裂隙等复杂地质构造对拱坝与地基整体稳定性的影响。通过超载法破坏试验获得坝体、坝肩、坝基岩体及结构面的变形特征、破坏失稳过程、破坏形态和破坏机制,揭示影响稳定的控制性因素和工程薄弱部位,确定拱坝与地基在各阶段的超载安全系数为:起裂超载安全系数K1 = 1.4~2.2,非线性变形超载安全系数K2 = 3.4~4.3,极限超载安全系数K3 = 6.3~6.6。通过对比分析类似拱坝工程的超载法试验结果可知,立洲拱坝的超载安全系数在统计分布范围之内,但两坝肩中上部的岩体和结构面局部破坏较严重,需对这些薄弱部位进行重点加固处理,以进一步提高坝与地基的整体稳定安全性。  相似文献   

15.
Hydropower projects are rapidly developing in China at present,and a number of high dams and large reservoirs are currently under construction or will soon be built.These large projects are mainly located on the great rivers in West China with complicated topographical and geological conditions.Evaluation of stability and safety of these high dam projects is an important topic.Geomechanical model test is one of the main methods to study the global stability of high dam and foundation.In this paper,a comprehensive testing method that combines overloading and strength reduction in a model is proposed.In this method,both the influence of excessive flooding and the effects of strength reduction of rock masses and weak structural planes on dam stability are considered.Thus,the comprehensive testing method can accurately incorporate multiple factors that affect the global stability of high dam and its foundation.Based on the failure testing principle and model similarity theory,a similarity relation formula for safety evaluation through comprehensive test is established.A new model material,temperature-dependent analogous material,is also developed.By rising the temperature and reducing the strength of the model material,the mechanical behaviors resulting from gradual strength reduction can be simulated.Thus,the comprehensive testing method is realized in a single model.For case studies,the comprehensive geomechanical model test is conducted for Jinping I and Xiaowan high arch dam projects.  相似文献   

16.
Several typical problems in the seismic response analysis of soil layers with deep deposits have been studied according to the seismic response analysis of the soil layer in the Shanghai region. The problems include the effect of the inclination of the bedrock under the soil layer on the seismic responses of the soil layer, the rationality of the artificial horizontal bedrock boundary in the soil layer, and the effect of the wave velocity of the bedrock and dynamic characteristics of the soil media on the seismic responses of the soil layer. Some results are obtained by numerical analysis. In the seismic response analysis, the effect of angle of inclination of the rock surface under the soil layer can be neglected if the angle is not more than two degrees. A significant error will be introduced in the calculation when the artificial horizontal rock surface is assumed in the soil layer according to the shear velocity of the soil media. The elasticity of the solid rock has little influence on the seismic response of the deep soil layer. The field investigation on the soil dynamic property should be paid more attention to. Translated from Journal of Tongji University (Natural Science), 2006, 34(4): 423–427 [译自: 同济大学学报(自然科学版)]  相似文献   

17.
Vast data from the drilling and geophysical prospecting are reliable original information to describe the space state of engineering rock mass, and one of the main difficulties in three-dimensional (3D) modeling of engineering rock mass is the processing of the primary data. From the view-point of 3D modeling, the engineering rock masses are classified as four basic types according to their geometric characteristics of geologic structure: (1) continuum rock mass; (2) discontinuous rock mass; (3) overturned fold rock mass and (4) intrusive rock mass. Because drilling data are very important to describe the characters of multi-scale of the spatial data for rock mass, the rule of how to process drilling data is developed to help appropriately display them in the viewpoint of 3D space. According to the characteristics of rock mass layers, the processing method of drilling data for 3D modeling of engineering rock masses, along with the layer thicknesses, is also proposed, including the evaluation rules and the extensive direction for original borehole data. By this method, the typical 3D data modeled is completed and the model form of the engineering rock mass is developed. By this example, it is finally verified that the method presented is successful and feasible to process 3D engineering rock mass. __________ Translated from Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11): 1 821–1 826 [译自: 岩石力学与工程学报]  相似文献   

18.
拱坝作为高次超静定的空间壳体结构,具有自适应能力强、超载安全系数大的显著特点,一般说来,拱坝是经济性和安全性都较优的一种坝型。然而,随着一大批高拱坝工程的相继建成,我国拱坝设计标准中对于高拱坝坝基可利用岩体质量要求过严,导致拱坝适应性和经济性降低的问题也逐渐显现。本文在对中、美拱坝坝基可利用岩体质量要求及中、外代表性拱坝工程坝基可利用岩体情况的对比分析的基础上,系统阐述了高拱坝坝基岩体质量要求过严所带来的不利影响,并列举了我国在特高拱坝及高拱坝设计中突破建基面岩体质量要求限制、取得显著经济效益的工程实例,希望能为类似工作提供参考。  相似文献   

19.
拱坝振动台动力破坏试验研究   总被引:6,自引:0,他引:6  
水电资源富集而高烈度地震频发的西南、西北地区的水电建设在西部大开发和全国能源合理配置中具有举足轻重的战略地位,而高拱坝抗震安全是西部水电开发建设的关键技术之一。针对拱坝在强地震动作用下的动力响应和损伤破坏过程,进行振动台模型试验研究。试验模型最大限度地模拟影响拱坝地震响应的各种主要因素,包括坝体—基础—库水间动力相互作用,坝体构造横缝,坝肩关键滑裂体,动态能量辐射等。模型坝体材料采用自然干燥粉状材料加压制成,满足模型强度相似要求。在逐级增加的输入地震作用下坝体共发生11处可确认开裂损伤,但未出现受压破坏。试验模拟呈现拱坝在地震作用下的响应及其损伤破坏过程,确定抗震薄弱部位,为全面定量评价拱坝的抗震性能提供重要依据。  相似文献   

20.
 针对坝基岩体开挖松弛这类特殊岩石力学问题,系统分析研究松弛判据及参数取值、松弛效应的有限元算法等关键技术问题,基于锚固室内试验和现场试验,推导坝基锚固措施对抗剪安全度效应的经验公式,建立一套简明实用的岩体开挖松弛和锚固分析评估有限元算法。以小湾拱坝为背景,得到坝基岩体松弛的时空特征,对比分析2种锚固方案下小湾拱坝的应力和位移、坝基浅部特征截面特征点安全度和锚杆应力等。计算得到应力–应变场结果与现场监测成果符合较好,说明该研究成果的可靠性和实用性,该研究成果已为设计决策提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号