首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
光伏系统输出功率具有随机性和波动性的特点,光伏系统并网以后可能引起运行和可靠性问题。提前对光伏发电功率进行准确预测有利于电力部门及时调度和保证电能质量,从而保证电网的安全运行。在分析灰色预测模型局限性的基础上,将灰色-马尔可夫链组合预测模型应用到光伏功率短期预测中,并阐述了其建模原理。通过对灰色模型拟合值的相对残差序列进行分析及建立马尔可夫链状态转移概率矩阵,得出灰色-马尔可夫链预测模型。通实际算例分析,证验了所提组合模型的准确性和简便性。  相似文献   

2.
基于灰色模型和神经网络组合的短期负荷预测方法   总被引:1,自引:0,他引:1  
提出了一种基于灰色模型和神经网络组合的短期负荷预测方法.首先利用频域分解消除负荷序列的周期性,然后利用灰色模型计算负荷序列的历史拟合值和未来预测值,将其作为神经网络的输入.在历史数据中选择一天作为基准日,以该基准日的量为参照,以负荷的灰色模型拟合值相对基准日的变化量,以及温度变化量为BP神经网络的输入,实际负荷变化量为输出,训练神经网络并预测待预测日负荷的变化量,加上基准日负荷后得到预测负荷.该方法综合了灰色模型方法和神经网络方法的优点,仿真结果验证了方法的有效性.  相似文献   

3.
光伏发电具有典型的间歇性、波动性等特点。准确预测光伏出力对电网调度、电网规划、提升新能源发电竞争力具有重要意义。提出了一种基于改进灰色BP神经网络的多模型组合光伏出力预测方法,采用常规GM(1,1)模型、幂函数变换GM(1,1)模型、基于残差修正的GM(1,1)模型以及等维新息GM(1,1)四种模型,利用BP神经网络对光伏出力的单一灰色预测结果进行优化组合输出,并根据输出值和期望值的偏差自动调整组合权值。该方法通过将多个单一预测结果组合成样本训练BP神经网络来获得较优权系数,避免了数值求解权系数的复杂过程,能够得到更为精确的预测结果。采用湖北某地光伏系统实际出力数据对该预测方法进行了验证。计算结果表明该基于改进灰色BP神经网络组合的光伏出力预测方法能够明显提高光伏出力预测精度。  相似文献   

4.
针对光伏发电短期预测模型的输入变量多且关系复杂、BP神经网络稳定性差且易陷入局部最优解等问题,建立了一种基于主因子分析法(PFA)和优化天牛须搜索算法(MBAS)的改进BP神经网络光伏发电短期预测模型。该模型首先对光伏历史发电数据和气象数据进行降维简化分析,利用主因子分析法对影响光伏发电的主要因素进行相关性分析,选取主因子作为预测模型输入量。然后利用MBAS算法的空间寻优搜索,选取BP神经网络训练的最优权值阈值。最后,利用实测历史数据对不同预测模型进行仿真对比。仿真结果表明,所建立的改进模型的预测精度可达92.5%,图像数据拟合程度高且适用多种天气类型的光伏发电预测。  相似文献   

5.
时珉  许可  王珏  尹瑞  张沛 《电工技术学报》2021,36(11):2298-2305
准确预测光伏发电功率对电网调度具有十分重要的意义.该文提出一种基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测方法.首先,利用灰色关联分析对某地区多光伏电站进行空间相关性分析,选取与待预测光伏电站高度相关的周边电站;然后,基于GeoMAN模型动态提取待预测光伏电站的时空特征和外部气象因素,GeoMAN模型采用编...  相似文献   

6.
基于GA-BP和POS-BP神经网络的光伏电站出力短期预测   总被引:2,自引:1,他引:2       下载免费PDF全文
当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题。基于本地5 k W小型分布式光伏电站,综合考虑影响光伏出力的太阳光辐射强度、环境温度、风速气象相关因素和光伏电站历史发电数据,分别采用BP以及遗传算法和粒子群算法优化的BP神经网络算法—GA-BP和POS-BP构建了晴天、多云、阴雨三种天气条件下光伏出力短期预测模型。实测结果表明,三种神经网络算法预测模型在三种不同天气条件下均达到了一定的预测精度。其中GA-BP、POS-BP相比传统的BP预测模型降低了预测误差,且POS算法相比GA算法对于BP神经网络预测模型的优化效果更好,进一步降低了预测误差,适用性更强。  相似文献   

7.
臧冬  尹杭  刘洋 《电气开关》2020,(3):49-53
光伏发电技术因其清洁无污染、安装便利、维护成本低和使用效率高等优势近年来获得了快速的发展,但是光伏输出功率具有明显的随机性和不确定性,当其大规模接入电网后其波动特性表现的更为突出,给电网带来巨大冲击的同时降低了电网运行的可靠性,增添了电网调度运行管理的成本与难度。针对此问题本文提出一种基于粒子群算法和神经网络算法的组合预测方法对光伏发电功率进行短期预测,对传统神经网络功率预测算法寻优性能欠佳的问题进行改善,利用粒子群算法对输入样本进行合理优化,同时利用变步长的动量梯度法对神经学习因子进行不断修正,形成一种组合的功率预测方法用于光伏功率预测。仿真结果表明本文预测模型在日类型天气为晴朗天气时的预测结果最好,精度提升相比传统方法来说13%左右。  相似文献   

8.
波浪能具有随机波动性,会对波浪能发电并网以及电力系统的安全稳定产生重要影响,准确预测波浪能可为电力调度控制带来极大便利。提出基于风-浪和灰色模型的波浪能发电系统功率预测方法,在波功率历史数据不足或缺省的情况下,能够依据风浪相关性及风速历史数据有效预测波浪功率。首先分析了风与波浪的相关性和时延特性,建立风-浪经验模型对波高进行短期预测,并利用灰色GM(1,1)模型对波浪短期预测结果进行残差修正。在此基础上,基于直驱式波浪能发电系统分析并建立了波高-功率转换模型。通过实例分析对波浪能发电功率的预测结果进行了验证。  相似文献   

9.
基于灰色神经网络组合模型的动态数据序列预测   总被引:1,自引:0,他引:1  
为了提高动态数据序列的预测精度,分析了现有BP神经网络和灰色预测方法各自的优缺点,并在此基础上建立了灰色神经网络组合模型.组合模型兼有BP神经网络和灰色预测的优点,弥补了单个模型的不足,既克服了数据波动性大对预测精度的影响,也增强了预测的自适应性.本方法利用灰色预测中的累加生成运算对原始数据进行变换,从而得到规律性较强的累加数据,便于神经网络进行建模和训练,并利用神经网络的函数逼近特性,实现对原始数据的预测.仿真结果表明:组合模型的预测精度高于单独的GM(1,1)模型,适用于具有复杂成分的动态数据序列的建模.  相似文献   

10.
针对光伏发电出力随机波动给电网调度造成困难这一问题,提出了一种基于SOM-PSO-BP的模型对光伏有功功率进行短期预测,用于提高电网对可再生能源的调度能力。首先采用自组织映射对原始数据组进行聚类降维;接着使用粒子群算法对BP神经网络的权重和偏置矩阵进行寻优;然后利用训练集构造SOM-PSO-BP预测模型;最后在对比仿真中验证了所提方法的有效性。  相似文献   

11.
基于BP神经网络-马尔科夫链的光伏发电预测   总被引:1,自引:0,他引:1  
为了减少发电量随机性对电力系统的影响,需要对发电功率预测进行研究。通过分析影响光伏发电功率的因素,基于BP神经网络理论,在Matlab软件中建立预测模型,实现了对输出功率的短期预测,并给出了基于马尔科夫链的改进预测精度的方法。  相似文献   

12.
光伏功率由于受到诸多局地随机突变因素的影响,其超短期预测面临很大挑战。云是引起地表辐射随机变化,进而引起光伏出力随机变化的最主要因素之一,在光伏功率预测建模中亟需将云这一因子进行量化和建模。首先,基于全天空云图,利用数字图像处理技术提取与辐射相关的图像特征;然后,将大气层外辐射、大气质量、图像亮度和云量作为输入因子,将地表辐射作为输出,建立径向基函数神经网络预测模型;最后,根据光电转换模型最终实现光伏功率超短期预测。实验结果表明:计及地基云图信息的光伏功率超短期预测模型,效果明显优于无图像信息的模型,为光伏电站超短期功率精确预测提供了重要的方法。  相似文献   

13.
为了有效地实现电力生产和供应,对各电网的电力负荷进行准确预测就十分必要。传统的GM(1,1)预测模型有建模数据少、计算简单和良好的短期预测能力等优点,这使得其在电力负荷的短期预测中得到了很好的应用,但是它不能有效处理电力系统的非线性问题,所以这种预测方法的预测精度不是很好。文章根据电力系统的非线性和波动性提出用灰色预测模型和神经网络理论相结合的灰色神经网络模型对电力负荷的时间序列进行短期预测。实验结果表明这种方法是可行的、有效的。  相似文献   

14.
光伏发电系统出力的随机性会对大电网造成冲击,需要加强光伏阵列发电功率预测的研究.为此,提出采用拟牛顿法小波神经网络建立光伏发电系统短期功率预测模型.以某光伏电站实测数据为比较对象,与基于标准梯度下降法BP神经网络以及基于附加动量和自适应学习速率结合的BP神经网络建立的2种预测模型进行对比研究,结果表明,拟牛顿法在收敛速度和预测精度上都更具有优势.此外,通过和拟牛顿法BP神经网络功率预测方法对比表明,拟牛顿法小波神经网络的预测精度更高,尤其是在一天早中晚时刻或辐照度较低情况下预测效果得到了很大的提高.  相似文献   

15.
光伏发电功率预测对提高并网后电网的稳定性及安全性具有重要意义。文章提出一种基于相似日和小波神经网络(WNN)的光伏功率超短期预测方法。首先利用光伏发电系统的历史气象信息建立气象特征向量,通过计算灰色关联度寻找到合适的相似历史日。再根据自相关性分析法找出与预测时刻功率相关性最大的几个历史时刻功率,结合历史时刻的温度,辐照度,风速等光伏出力的主要天气影响因素科学合理的确定模型输入因子。最后使用小波神经网络(WNN)创建预测模型,通过相似历史日数据作为训练样本训练小波网络,而后对预测日的出力情况进行逐时刻预测。实例分析表明,该方法具有较高的预测精度,为解决光伏发电系统超短期功率预测提供了一种可行路径。  相似文献   

16.
光伏电站输出功率对电网调度有很大影响,但受到太阳辐射强度和气象因素的影响,光伏电站输出功率具有随机性和不可控性。为合理利用光伏发电系统,建立一种基于气象预测信息以及BP神经网络的光伏电站输出功率预测模型。通过相关性分析确定影响光伏出力的影响因子,结合历史数据和气象因素进行模型训练和功率预测。文中主要提出一种新的预测模型-双层BP神经网络模型,通过对某光伏电站预测结果与实测值对比,结果表明该方法能有效提高光伏电站输出功率预测精度,对发电计划的制定有较好的参考价值和实用价值。  相似文献   

17.
精确的短期电力负荷预测对电力系统的生产调度和安全稳定运行起到十分重要的作用。为提高短期电力负荷预测模型的精度。提出了一种基于Elman神经网络的改进模型。通过在输出层和隐含层之间扩展一个新的承接层。增强了Elman神经网络的动态信息处理能力。仿真结果表明,改进型Elman神经网络预测模型的预测精度要高于反向传播、支持向量机和常规Elman,同时也说明了建立改进型Elman模型用于短期电力负荷预测是可行的。  相似文献   

18.
针对现有光伏功率预测结果精度低、无法反映功率变动范围等问题,提出考虑不确定性的短期光伏功率综合预测方法。建立基于预估-校正综合BP神经网络的光伏功率点预测模型和考虑不确定性的光伏功率区间预测模型。结合某光伏电站历史数据对所提方法的正确性和有效性进行验证,算例分析表明,基于预估-校正综合BP神经网络的光伏功率点预测模型有效提高了光伏功率预测的精准度,考虑不确定性的光伏功率区间预测模型准确反映了光伏功率的变化趋势和范围。  相似文献   

19.
基于CNN-LSTM混合神经网络模型的短期负荷预测方法   总被引:5,自引:0,他引:5  
为了更好地挖掘海量数据中蕴含的有效信息,提高短期负荷预测精度,针对负荷数据时序性和非线性的特点,提出了一种基于卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型短期负荷预测方法,将海量的历史负荷数据、气象数据、日期信息以及峰谷电价数据按时间滑动窗口构造连续特征图作为输入,先采用CNN提取特征向量,将特征向量以时序序列方式构造并作为LSTM网络输入数据,再采用LSTM网络进行短期负荷预测。使用所提方法对江苏省某地区电力负荷数据进行预测实验,实验结果表明,文中所提出的预测方法比传统负荷预测方法、随机森林模型负荷预测模型方法和标准LSTM网络负荷预测方法具有更高的预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号