首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polycrystalline silicon (poly-Si) films were deposited on glass by very high-frequency (100 MHz) plasma enhanced chemical vapor deposition from a gaseous mixture of SiF4 and H2 with small amounts of SiH4. (2 2 0) oriented films prepared at small SiF4/H2 ratios (<30/40 sccm) showed intrinsic transport properties of poly-Si. However, the room temperature dark conductivity (σd) of the (4 0 0) oriented film was very high for intrinsic poly-Si, 7.2×10−4S/cm. This conductivity exhibited a T−1/4 behavior, suggesting a high defect density at the grain boundaries. It was found that in situ hydrogen plasma treatment successfully produced (4 0 0) oriented poly-Si with a reasonably low σd of 4.5×10−7S/cm and a good photoconductivity of 1.3×10−4S/cm.  相似文献   

2.
Polycrystalline CuIn0.7Ga0.3Se2 thin films were prepared on soda-lime glass substrates using pulsed laser deposition (PLD) with various process parameters such as laser energy, repetition rate and substrate temperature. It was confirmed that there existed a limited laser energy, i.e. less than 300 mJ, to get phase pure CIGS thin films at room temperature. Particularly, even at room temperature, distinct crystalline CIGS phase was observed in the films. Crystallinity of the films improved with increasing substrate temperature as evidenced by the decrease of FWHM from 0.65° to 0.54°. Slightly Cu-rich surface with Cu2−xSe phase was confirmed to exist by Raman spectra, depending on substrate temperature. Improved electrical properties, i.e., carrier concentration of ∼1018 cm−3 and resistivity of 10−1 Ω cm at higher substrate temperature for the optimal CIGS films are assumed to be induced by the potential contributions from highly crystallized thin films, existence of Cu2−xSe phase and diffusion of Na from substrates to films.  相似文献   

3.
Polycrystalline silicon films have been prepared by hot-wire chemical vapor deposition (HWCVD) at a relatively low substrate temperature of 430°C. The material properties have been optimized for photovoltaic applications by varying the hydrogen dilution of the silane feedstock gas, the gas pressure and the wire temperature. The optimized material has 95% crystalline volume fraction and an average grain size of 70 nm. The grains have a preferential orientation along the (2 2 0) direction. The optical band gap calculated from optical absorption by photothermal deflection spectroscopy (PDS) showed a value of 1.1 eV, equal to crystalline silicon. An activation energy of 0.54 eV for the electrical transport confirmed the intrinsic nature of the films. The material has a low dangling bond-defect density of 1017 cm3. A photo conductivity of 1.9 × 10−5 Ω−1cm−1 and a photoresponse (σphd) of 1.4 × 102 were achieved. A high minority-carrier diffusion length of 334 nm as measured by the steady-state photocarrier grating technique (SSPG) and a large majority-carrier mobility-lifetime (μτ) product of 7.1 × 10−7cm2V−1 from steady-state photoconductivity measurement ensure that the poly-Si : H films possess device quality. A single junction n---i---p cell made in the configuration n+-c-Si/i-poly-Si: H/p-μc-Si : H/ITO yielded 3.15% efficiency under 100 mW/cm2 AM 1.5 illumination.  相似文献   

4.
Optical confinement effect of thin-film polycrystalline-Si (poly-Si) solar cell on glass substrate fabricated at low-temperature has been investigated as a function of cell thickness of less than 5 μm. We found that it is possible to fabricate the textured Si thin film in situ on a glass substrate and that the reflectance at long-wavelength light is reduced by surface texturing. Thin-film poly-Si solar cell and a-Si:H/(0.45 μm)/poly-Si (5 μm) tandem solar cell exhibit the efficiency of 8.6% and 12.8%, respectively. The numerical study in terms of the light trapping explains the excellent high short-circuit current density (sc above 27 mA/cm2 at the 4.7 μm thin-film poly-Si solar cell.  相似文献   

5.
Transparent ZnO films were prepared by rf magnetron sputtering, and their electrical, optical, and structural properties were investigated under various sputtering conditions. Aluminum-doped n-type(n-ZnO) and undoped intrinsic-ZnO (i-ZnO) layers were deposited on a glass substrate by incorporating different targets in the same reaction chamber. The n-ZnO films were strongly affected by argon ambient pressure and substrate temperature, and films deposited at 2 mTorr and 100°C showed superior properties in resistivity, transmission, and figure of merit (FOM). The sheet resistance of ZnO film was less dependent on film thickness when the substrate was heated during deposition. These positive effects of elevated substrate temperature are presumably attributed to the rearrangement of the sputtered atoms by the heat energy. Also, the films are electrically uniform through the 5 cm×5 cm substrate. The maximum deviation in sheet resistance is less than 10%. All of the films showed strong (0 0 2) diffraction peak near 2θ =34°. The undoped i-ZnO films deposited in the mixture of argon and oxygen gases showed high transmission properties in the visible range, independent of the Ar/O2 ratio, while resistivity rose with increased oxygen partial pressure. The Cu(In,Ga)Se2 solar cells, incorporating bi-layer ZnO films (n-ZnO/i-ZnO) as window layer, were finally fabricated. The fabricated solar cells showed 14.48% solar efficiency under AM 1.5 conditions (100 mW/cm2).  相似文献   

6.
Polycrystalline CuIn1 − xGaxSe2 (0 ≤ x < 0.3) films (CIGS) were deposited by coevaporating the elements from appropriate sources onto glass substrates (substrate temperature 720 to 820 K). Photoconductivity of the polycrystalline CIGS films with partially depleted grains were studied in the temperature range 130–285 K at various illumination levels (0–100 mW/cm2). The data at low temperature (T < 170 K) were analyzed by the grain boundary trapping model with monovalent trapping states. The grain boundary barrier height in the dark and under illumination were obtained for different x-values of CuIn1−xGaxSe2 films. Addition of Ga in the polycrystalline films resulted in a significant decrease in the barrier height. Variation of the barrier height with incident intensity indicated a complex recombination mechanism to be effective in the CIGS films.  相似文献   

7.
High-quality (1 1 0)/(1 0 1)-oriented epitaxial β-FeSi2 films were fabricated on Si (1 1 1) substrate by the sputtering method. The critical feature was the formation of a high-quality thin β-FeSi2 template buffer layer on Si (1 1 1) substrate at low temperature. It was demonstrated that the template is very important for the epitaxial growth of thick β-FeSi2 films and for the blocking of Fe diffusion into the Si at the β-FeSi2/Si interface. Hall effect measurements for β-FeSi2 films showed n-type conductivity, with residual electron concentration around 2.0 × 1017 cm−3 and mobility of 50–400 cm2/V s. A prototype thin-film solar cell was fabricated by depositing n-β-FeSi2 on p-Si (1 1 1). Under 100 mW/cm2 sunlight, an energy conversion efficiency of 3.7%, with an open-circuit voltage of 0.45 V, a short-circuit current density of 14.8 mA/cm2 and a fill factor of 0.55, was obtained.  相似文献   

8.
CuGaSe2–GaAs heterojunctions were fabricated by fast evaporation of polycrystalline CuGaSe2 from a single source on n-type GaAs substrates. The best CuGaSe2–GaAs photocell (without an antireflective coating) exhibited an efficiency of 11.5%, Jsc=32 mA/cm2, Voc=610 mV and FF=0.60. The spectral distribution of photosensitivity of CuGaSe2–GaAs junctions extends from 400 to 900 nm. The CuGaSe2 films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. XRD analysis indicated that the thin films were strongly oriented along the (1 1 2) plane. SEM studies of CuGaSe2 films showed nearly stoichiometric composition with grain size about 1–2 μm. The energy dispersive X-ray spectroscopy (EDX) analysis of Cu concentration distribution in n-type GaAs showed that Cu diffused from the film into n-type GaAs during the growth process resulting in formation of the latent p–n homojunction in substrate. The diffusion coefficient of Cu in GaAs at growth temperature (520°C) estimated from EDX measurements was 6×10−8 cm2/s.  相似文献   

9.
In this study, nanostructured α-Fe2O3 thin films were deposited by simple electrodeposition for photoelectrochemical water splitting. Post-annealing temperature was found to have drastic effect on photoactivity of these films. SEM analysis illustrated that size of nanoparticles increases with annealing temperature. The current–potential characteristics showed that the water-splitting photocurrent strongly depends on post-annealing temperature. A maximum photocurrent density of 0.67 mA/cm2 was observed at 1.23 V versus reversible hydrogen electrode (RHE) under standard illumination conditions (AM 1.5 G 100 mW/cm2), and the water-splitting current was over 1.0 mA/cm2 before the dark current flow starts (at 1.55 V versus RHE). The electrode shows an onset potential as low as 0.8 V (versus RHE) for water photooxidation, which is one of the best results reported for hematite photoanodes. This high photoactivity of electrodes is attributed to the preferential growth of hematite nanostructures along the most conductive plane (001) and incorporation of Sn in film from the substrate at high annealing temperature. The best-performing electrode shows an incident photon conversion efficiency (IPCE) of 12% at 400 nm (in 1 M NaOH at 1.23 V versus RHE), which indicate the improved light-harvesting properties of these nanostructures.  相似文献   

10.
In this study, highly stabilized hydrogenated amorphous silicon films and their solar cells were developed. The films were fabricated using the triode deposition system, where a mesh was installed between the cathode and the anode (substrate) in a plasma-enhanced chemical vapor deposition system. At a substrate temperature of 250 °C, the hydrogen concentration of the resulting film (Si–H=4.0 at%, Si–H2<1×1020 cm−3) was significantly less than that of conventionally prepared films. The films were used to develop the i-layers of solar cells that exhibited a significantly low degradation ratio of 7.96%.  相似文献   

11.
Intrinsic and n-type hydrogenated nanocrystalline silicon thin films (nc-Si:H) were deposited at a temperature as low as 95 °C by high-frequency (HF) sputtering, with hydrogen dilution percentage varying from 31% to 73%. In order to study the properties of the films prepared by this method, the samples were examined by infrared absorption spectroscopy (IR), X-ray diffraction (XRD), SEM, spectroscopic ellipsometry (SE), laser Raman spectrometry and atomic force microscopy (AFM). XRD measurements showed that this film has a new microstructure, which is different from the films deposited by other methods. In addition, an n-type nc-Si:H/p-type c-Si heterojunction solar cell, which has an open circuit voltage (Voc) of 370 MV and a short-circuit current intensity (Jsc) of 6.5 mA/cm2, was produced on the nanocrystalline silicon thin film. After 10 h light exposure under AM1.5 (100 MW/cm2) light intensity at room temperature, radiation degradation has not been found for the device.  相似文献   

12.
Single phase CuGaS2 thin film with a highest diffraction peak of (1 1 2) at a diffraction angle (2θ) of 28.8° was made at a substrate temperature of 70°C, an annealing temperature of 350°C and an annealing time of 60 min. Second highest (2 0 4) peak was shown at diffraction angle of (2θ) 49.1°. Lattice constant of a and c of that CuGaS2 thin film was 5.37 and 10.54 Å, respectively. The greatest grain size of the thin film was about 1 μm. The (1 1 2) peak of single phase of CuGaS2 thin film at an annealing temperature of 350°C with excess S supply appeared at a little higher about 10% than that of no excess S supply. The resistivity, mobility and hole density at room temperature of p-type CuGaS2 thin film was 1.4 Ω cm, 15 cm2/V s and 2.9×1017 cm−3, respectively. It was known that carrier concentration had considerable effect than mobility on a variety of resistivity of the fabricated CuGaS2 thin film, and the polycrystalline CuGaS2 thin films were made at these conditions were all p-type.  相似文献   

13.
High-energy proton irradiation (380 keV and 1 MeV) on the electrical properties of CuInSe2 (CIS) thin films has been investigated. The samples were epitaxially grown on GaAs (0 0 1) substrates by Radio Frequency sputtering. As the proton fluence exceeded 1×1013 cm−2, the carrier concentration and mobility of the CIS thin films were decreased. The carrier removal rate with proton fluence was estimated to be about 1000 cm−1. The electrical properties of CIS thin films before and after irradiation were studied between 80 and 300 K. From the temperature dependence of the carrier concentration in CIS thin films, we found ND=9.5×1016 cm−3, NA=3.7×1016 cm−3 and ED=21 meV from the fitting to the experimental data on the basis of the charge balance equation. After irradiation, a defect level was created, and NT=1×1017 cm−3 for a fluence of 3×1013 cm−2, NT=5.7×1017 cm−3 for a fluence of 1×1014 cm−2 and ET=95 meV were also obtained from the same fitting. The new defect, which acted as an electron trap, was due to proton irradiation, and the defect density was increased with proton fluence.  相似文献   

14.
A simple spray method for the preparation of pyrite (FeS2) thin films has been studied using FeSO4 and (NH4)2Sx as precursors for Fe and S, respectively. Aqueous solutions of these precursors are sprayed alternately onto a substrate heated up to 120°C. Although Fe–S compounds including pyrite are formed on the substrate by the spraying, sulfurization of deposited films is needed to convert other phases such as FeS or marcasite into pyrite. A single-phase pyrite film is obtained after the sulfurization in a H2S atmosphere at around 500°C for 30 min. All pyrite films prepared show p-type conduction. They have a carrier concentration (p) in the range 1016–1020 cm−3 and a Hall mobility (μH) in the range 200–1 cm2/V s. The best electrical properties (p=7×1016 cm−3, μH=210 cm2/V s) for a pyrite film prepared here show the excellence of this method. The use of a lower concentration FeSO4 solution is found to enhance grain growth of pyrite crystals and also to improve electrical properties of pyrite films.  相似文献   

15.
Boron-doped amorphous carbon (a-C(B)) films were prepared on n-type silicon using pulsed laser deposition technique of a graphite target. The a-C(B) films have been proved to be p-type by the formation of a heterojunction between the a-C(B) film and n-Si. The device of a-C(B)/n-Si structure yielded an open-circuit voltage (Voc) of 0.27 V and a short-circuit current density (Jsc) of 2.2 mA/cm2 under illumination (AM1.5 100 mW/cm2). According to calculation, the energy conversion efficiency and fill factor were found to be about 0.3% and 0.53, respectively.  相似文献   

16.
In this paper, the photovoltaic feature of metal-boron carbide-silicon (MCS) solar cell was reported. The boron-doped diamond-like carbon thin film on n-silicon substrate has been prepared using arc-discharge plasma chemical vapor deposition (PCVD) technique. The conductivity and the resistivity of the film were measured by Bio-Rad Hall5500PC system to be p-type semiconductor and 3–12 Ω cm/□, respectively. The boron content in the films was about 0.8–1.2%, obtained from Auger electron spectroscopy (AES), and some microcrystalline diamond grains (0.5–1.0 μm) embedded in the mainly amorphous network were revealed through scanning electron microscope (SEM) and Raman spectrum. The performance of Au/C(B)/n-Si heterojunction solar cells has been given under dark IV rectifying curve and IV working curve (with 100 mW cm−2 illumination). A measurement of open-circuit voltage Voc=580 mV and short-circuit current density Jsc=32.5 mA cm−2 was obtained. Accordingly, the energy conversion efficiency of the device was tentatively determined to be about 7.9% in AM 1.5, 100 mW/cm2 illuminated.  相似文献   

17.
Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH4, PH3 and N2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10−4 S cm−1 were realized, which is 250 times higher than the conductivity of pure SiO2 films (1 × 10−6 S cm−1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.  相似文献   

18.
The molecular water concentration inside zinc phthalocyanine (ZnPc) thin films was measured. After exposure to air, gas effusion experiments show that the ZnPc layers contain (1.7±0.4)×1020 water molecules per cm3, which corresponds to 1 H2O per 10 ZnPc units. We can distinguish a mobile and an immobilized population of H2O in ZnPc films. The mobile part effuses out at room temperature when exposing the films to a low pressure of 10−2 mbar, whereas temperature activation is needed to reach a complete out-diffusion of water. The effusion process was observed to proceed with a diffusion coefficient DH2O of (1.3±0.3)×10−10 cm2 s−1 at 296 K. The rate of water effusion directly correlates with the timescale of the decrease of surface conductivity when exposing the layers to an equally low pressure. This indicates the existence of an electrically active surface layer of water molecules, which is refilled from the bulk of water molecules during the effusion process.  相似文献   

19.
Amorphous In–Zn–O (a-IZO) films were deposited on SiOx covered n-type Si substrates by using pulsed laser deposition (PLD) technique to form a-IZO/SiOx/n-Si heterojunction solar cells. The a-IZO films grown at 150 °C with various laser power (250–500 mJ/pulse) exhibit low resistivity (2–3 × 10−3 Ω cm) and high transparency (∼80%) in the visible wavelength range. The highest conversion efficiency of the fabricated a-IZO/SiOx/n-Si solar cells is 2.2% under 100 mW/cm2 illumination (AM1.5 condition). The open-circuit voltage, short-circuit current density and fill factor of the best device are 0.24 V, 28.4 mA/cm2 and 33.6%, respectively.  相似文献   

20.
Metal organic vapor-phase epitaxy (MOVPE) is used to prepare epitaxial reference films and solar cells based on CuGaSe2. Room temperature Hall measurements are performed on epitaxial CuGaSe2. Conductivities up to 0.7 (Ω cm)−1 were obtained. Highest mobilities of 270 cm2/Vs are observed for near stoichiometric slightly Ga-rich films. Net charge carrier concentration is higher in the Cu-rich grown films than in the Ga-rich films. Solar cells with epitaxial absorber are prepared that reach efficiencies of 3.3%. First polycrystalline solar cells are grown on Mo/glass at reduced substrate temperatures. Under AM1.5 illumination open-circuit voltages up to 740 mV and efficiencies of 2.0% are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号