首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
为研究北京市采暖期PM2.5中有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的污染特征和来源,于2011年12月至2012年2月在北京师范大学监测点进行PM2.5样品的采集.本研究分析PM2.5及其OC和EC的质量浓度变化特征,并采用ρ(OC)/ρ(EC)最小比值法估算二次有机碳(secondary organic carbon,SOC)的质量浓度.除此之外,从定性和定量两方面研究OC和EC的来源及其来源贡献量.结果表明:北京市采暖期PM2.5平均质量浓度为(90.69±61.86)μg/m3,其中OC和EC的平均质量浓度分别为(21.91±12.02)、(5.03±2.58)μg/m3,分别占PM2.5的24.16%和5.55%;SOC的平均质量浓度为(8.37±6.05)μg/m3,占总有机碳(total organic carbon,TOC)质量浓度的37.27%.PM2.5中OC和EC的相关系数较高,表明它们来源相同,且主要来源于机动车尾气、燃煤排放.机动车尾气排放的贡献量达44.70%,成为OC、EC的重要来源.因此,严格控制机动车保有量的快速增长,减少机动车尾气排放,将成为改善城市大气环境质量的重要手段之一.  相似文献   

2.
通过对箱体实验仓内PM2.5的采集、称重与PM2.5中碳组分的分析,研究香烟自由燃烧过程PM2.5的一次排放和燃烧结束后仓内PM2.5的二次生成。结果表明:单支某品牌香烟自由燃烧时PM2.5一次排放量为1 200μg,排放速率为3μg·s-1,1 h内30 m3空间室内连续9支香烟自由燃烧,PM2.5质量浓度最大可增加360μg·m-3。香烟自由燃烧直接排放的PM2.5中碳组分的分布特征:碳组分占PM2.5的比重为57.7%,高于环境空气PM2.5中碳组分比重;OC1、OC2、OC3是香烟自由燃烧过程一次排放PM2.5中碳组分的优势组分,ρ(OC1)/ρ(TC)为34.6%,ρ(OC2)/ρ(TC)为23.9%,ρ(OC3)/ρ(TC)为17.8%;香烟自由燃烧排放PM2.5中ρ(OC)/ρ(EC)的特征值为14.8,ρ(Char)/ρ(Soot)的特征值为1.2。香烟自由燃烧结束后仓内PM2.5及碳组分的分布反映香烟自由燃烧烟气对于PM2.5的二次生成有一定的贡献。  相似文献   

3.
石家庄市冬季大气中TSP,PM10,PM2.5污染水平研究   总被引:1,自引:0,他引:1  
为研究石家庄市冬季大气颗粒物污染特征,于2013年2月采集TSP,PM10,PM2.5样品,用重量法分析其质量浓度,并对其相关性进行分析.结果表明,用环境空气质量标准(GB 3095-2012)来衡量,石家庄市冬季大气颗粒物TSP,PM10和PM2.5的日均浓度超标率分别为57.9%,82.9%和81.6%;超标倍数分别为1.28,1.86和2.24倍,超标情况严重;TSP与PM10和PM10与PM2.5相关系数分别为0.748 9和0.760 4,相关性较好;ρ(PM10)/ρ (TSP)平均值为0.74,ρ(PM2.5)/ρ(PM10)平均值为0.61,表明PM10和PM2.5污染严重.  相似文献   

4.
通过采集北京城区2015年冬夏季代表月1月和7月大气细颗粒物PM2.5样品,结合相关气象数据,分析研究了北京城区冬夏季PM2.5及其中有机碳(OC)和元素碳(EC)的质量浓度变化和污染特征.利用ρ(OC)/ρ(EC)最小比值法估算了二次有机碳(SOC)质量浓度,并采用后向轨迹模型和聚类分析法,研究了气团传输对灰霾形成的影响.结果表明,PM2.5和含碳气溶胶质量浓度表现为冬季夏季,霾日非霾日.SOC是OC的重要组成部分,冬季占OC质量浓度的47.16%,夏季达55.54%.北京市冬季霾日的气团轨迹主要为西北高空气团和局地气团,其中来自京津冀周边的局地气团传输对灰霾污染有较大贡献;夏季霾日的气团轨迹主要为东南气团、西北气团和西南气团,其中来自南方的气团轨迹所占频率较高,对灰霾污染贡献较大.因此加强京津冀及周边地区大气污染治理联防联控,对北京市空气质量改善具有重要意义.  相似文献   

5.
典型城市夏季碳组分污染特征与来源解析   总被引:2,自引:0,他引:2  
为了研究京津冀地区典型城市PM2.5及其碳组分的污染特征和来源,选取北京和唐山具有代表性的5个监测点于2012年7月3日至30日进行了PM2.5样品采集.分析研究了PM2.5、有机碳(OC)和元素碳(EC)的质量浓度及变化特征,采用OC/EC最小比值法估算了二次有机碳(SOC)的质量浓度,并使用因子分析法解析了碳组分来源.结果表明:采样期间北京市PM2.5、OC和EC质量浓度分别为76.2±38.5μg/m3、7.0±2.2μg/m3和3.0±1.4μg/m3,均低于唐山的97.7±38.8μg/m3、11.7±6.3μg/m3和7.0±5.0μg/m3;北京灰霾天气PM2.5、OC和EC浓度分别为非霾天气的2.0、1.2和1.8倍,唐山相应为1.4、1.5和1.6倍;北京和唐山SOC质量浓度分别为3.0μg/m3和5.1μg/m3,分别占OC质量浓度的42.9%和43.6%;北京和唐山PM2.5中碳组分主要来源于燃煤和机动车尾气,其贡献量均超过75%,因此要进一步加强清洁能源替代、控制机动车保有量的增长及提高车用油质量.  相似文献   

6.
2014年3月13日至4月20日在福建三明市利用PM_(2.5)中流量采样器采集大气中PM_(2.5)膜样品,测定了PM_(2.5)的质量浓度,并用热/光碳分析仪和离子色谱分析了其组分变化特征.结果表明,三明市观测期间PM_(2.5)的平均质量浓度为73.61±0.73μg/m~3,有机碳(OC)和元素碳(EC)的平均质量浓度分别为7.26±1.00和5.63±0.27μg/m~3,水溶性离子中SO_4~(2-)、NH_4~+、NO_3~-和Na~+的质量浓度分别为18.08±12.19、4.18±3.56、2.77±1.16和2.73±0.23μg/m~3,总和占总水溶性离子的87.76%.结合后向轨迹分析了福建三明市的污染物来源特征.该地区OC/EC的平均比值小于2,SOC(二次有机碳)生成量很少,主要以一次有机污染物为主,OC、EC与K~+的相关性分析表明OC、EC与K~+的来源相近,可以判断OC、EC绝大部分来源是生物质燃烧产生的污染物.在水溶性离子分析中,观测期间NO_3~-/SO_4~(2-)为0.159±0.02,表明三明市主要以固定源为主,机动车辆等移动源贡献较少.  相似文献   

7.
为了探讨西安市PM2.5和碳气溶胶质量浓度变化特征,从2012年3月~2013年2月对西安市大气PM2.5进行了为期一年的观测,并分析了有机碳(OC)和元素碳(EC)的质量浓度变化特征.结果显示,西安市2012年3月~2013年2月日均PM2.5质量浓度变化幅度为26.9~505.1μg/m3,PM2.5年平均质量浓度为114.0±86.6μg/m3,是中国PM2.5空气质量标准(GB3095-2012)年平均二级标准值(35μg/m3)的3.3倍.PM2.5季节变化特征为冬季秋季春季夏季.OC和EC年平均浓度值为21.44±15.76μg/m3和6.16±3.38μg/m3,OC/EC年平均值为3.37±0.95,变化范围为1.80~5.84,表明有二次有机碳气溶胶的存在.主成分分析法表明,西安市大气中的碳气溶胶主要来自汽油车和柴油车尾气、二次碳气溶胶以及生物质燃烧.  相似文献   

8.
为探讨济南市灰霾日大气细颗粒物的化学组分特征, 于2014-01-15—02-17利用PM1.0、 PM2.5中流量采样仪,离子色谱及OC/EC分析仪等研究手段,对济南市灰霾日PM1.0及PM2.5的浓度水平及化学组成进行了系统研究。结果表明:灰霾日和非灰霾日NO-3、SO2-4、NH+4均为PM1.0和PM2.5的主要成分,灰霾日时NO-3、SO2-4、NH+4质量浓度占PM1.0和PM2.5质量浓度的比例明显升高,并且三种成分质量浓度在PM1.0中均有显著升高,显示二次无机气溶胶的快速增加是灰霾形成的重要因素。碳质组分(OC+EC)是PM1.0及PM2.5中所占比例为第二位的组分,灰霾日OC和二次有机碳(SOC)较非灰霾日明显升高,表明灰霾日更有利于SOC的生成。72 h后向气流轨迹分析表明,起源于山东省内东部及北京、天津一带气流的近地面传输对灰霾形成有重要影响。  相似文献   

9.
目的研究城市空气污染现状以应对日益严重的城市空气污染问题.方法以某市为研究区域,市城区以及邻县的大气颗粒物为研究对象,分别于采暖季、风沙季、非采暖季每个季度连续6天对TSP、PM小PM2.5,样品进行有效同步采集,对该市大气颗粒物质量浓度的时空分布特征和影响因素进行了分析.结果该市空气大气颗粒物污染以PM2.5,的污染最为严重,PM2.5,最大超标倍数为3.6倍.结论该市大气颗粒物的平均质量浓度变化特征为采暖李质量浓度〉风沙季质量浓度〉非采暖季质量浓度,TSP、PM10和PM2.5,质量浓度与风速呈现负相关性,PM10和PM2.5质量浓度与湿度呈现正相关性,TSP质量浓度与湿度呈现负相关性,能见度与三个粒径的颗粒物浓度均呈现负相关性.  相似文献   

10.
利用AMA254测汞仪分析了淮南市大气颗粒物中的汞含量,分析其分布的季节特征。研究结果表明:大气PM10和PM2.5颗粒物中汞的质量浓度季节变化为:冬季〉夏季〉春季〉秋季,体积浓度变化为:冬季〉秋季〉春季〉夏季。相关性分析中表明,大气中颗粒态汞主要富集在PM2.5中。  相似文献   

11.
石家庄市2005-2012年环境空气质量变化及影响因素分析   总被引:1,自引:0,他引:1  
利用石家庄市区环境空气质量定点监测资料,研究了市区2005-2012年环境空气质量变化趋势及影响因素。结果表明:石家庄市首要污染物是PM10(可吸入颗粒物),其次为SO2(二氧化硫),呈现尘污染和煤烟型污染特征;SO2和NO2(二氧化氮)、PM10月均值总体呈非采暖期小于采暖期的趋势,PM10在非采暖期3-5月份出现一个小高峰,沙尘天气影响可能是其主要原因。API(空气污染指数)的月均值与PM10月际变化趋势一致,表明石家庄市大气污染以尘污染为主。总体上,PM10呈现显著下降趋势,SO2和NO2呈不显著上升趋势,空气综合污染指数表现为不显著下降。能源结构变化、产业结构变化、污染源综合整治对减轻环境空气污染起到一定的作用。  相似文献   

12.
为研究华北平原PM2.5、PM1.0的污染特征,于2014年10月至2016年6月在济南城区使用中流量采样器对大气颗粒物样品进行采集,利用离子色谱、碳气溶胶分析仪测定了颗粒物中的水溶性无机离子成分和碳组分。结果表明:济南城区冬季大气细颗粒污染较重,二次离子SO42-、NO3-和NH4+是PM2.5、PM1.0最主要的水溶性无机离子,且更易富集在PM1.0中。有机碳和元素碳的质量浓度表现为春夏低,秋冬高;二次有机碳的质量浓度在冬季明显升高,且大多分布在粒径>1 μm的颗粒物中。72 h后向气流轨迹表明,来自河北、内蒙古的长距离传输与山东地区的局地传输对济南大气中PM2.5和PM1.0的离子质量浓度有重要影响。济南冬季的消光系数高达789.13 Mm-1, PM2.5中的二次粒子NH4+、SO42-和NO3-与消光系数的相关性较高,是使大气能见度降低的主要因素。  相似文献   

13.
大气颗粒物源解析监测中的质量控制   总被引:1,自引:0,他引:1  
为确保石家庄市大气颗粒物源解析研究数据的准确性和精密性,首先结合城市自然环境、能源结构、大气环境质量现状等进行合理布点采样,同时在大气颗粒物样品采集、滤膜称量、化学组分分析等监测过程中实施了空白分析、实验室平行样分析、标准曲线绘制与核查、加标回收、有证标准物质核查等一系列质量保证措施,通过对这些质量保证措施实施情况的阐述与质量控制数据的统计、计算与分析,证明了该大气颗粒物源解析监测工作从样品采集及其称量到化学组分分析等全过程是真实有效的,表明了石家庄市大气颗粒物源解析监测数据的准确性和监测工作的可靠性.  相似文献   

14.
为了改善南昌市城市环境质量,给政府部门完善"生态南昌"的建设提供科学依据,本项目采集了PM10、道路扬尘、建筑扬尘等样品,并用ICP-AES对样品进行了重金属元素的分析,结合Excel2003,SPSS11.5软件对数据进行统计分析。结果表明:南昌市工业区采样点李家庄PM10的浓度较高(635.5159μg/m3),主要交通区PM10的浓度高于居住区。南昌市大气颗粒物PM10重金属元素的污染不容忽视,工业区采样点李家庄PM10中Cu、Mn、Pb、Zn的浓度分别为104.5447mg/m3、454.5147mg/m3、325.0281mg/m3,626.7280mg/m3,远高于八一桥头(交通繁忙区)及永外正街(居民住宅区)两采样点。重金属元素按污染程度排序依次为Zn〉Mn〉Pb〉Cd〉Cu〉Cr〉Ni,工业污染是城市大气颗粒物重金属污染的主要来源。进一步拆迁重污染的企业、减少建筑扬尘及道路扬尘、淘汰报废的汽车以及改善能源结构将有利于改善南昌市的空气质量。  相似文献   

15.
为了解吉林市大气环境现状,利用2014-2018年吉林市城区7个国控环境空气质量监测站点的CO、SO2、NO2、O3(O3-8 h)、PM2.5和PM10质量浓度监测数据以及2018年逐时气象数据,采用相关分析法和应用统计法分析了大气污染物的质量浓度变化特征以及各污染物浓度与气象因素的相关性.研究结果表明:吉林市2014-2018年来SO2、NO2、PM10、PM2.5年均浓度总体呈下降趋势,O3浓度有上升趋势;PM10、PM2.5和O3浓度有超标现象,说明其为吉林市主要大气污染物;同一污染物浓度在不同季节、月份和时刻具有明显的变化特征,可以根据变化规律采用错峰生产的方式改善环境空气质量;气象因素与污染物浓度之间有较好的相关性,其中O3浓度与温度、湿度、风速均呈现高度相关性,NO2浓度与风速高度负相关;气象因素对CO、NO2、O3  相似文献   

16.
为研究采暖季北京市主要大气污染物变化特征,收集北京市35个自动空气监测站点2013年11月至2014年4月上半月6种大气污染物的小时浓度均值,分析了其时间变化规律,并采用地理信息系统分析了污染物的空间分布特征.北京市采暖期间CO、NO2、SO2、O3、PM2.5和PM10的平均质量浓度分别为2.62 mg/m3、64.05μg/m3、50.52μg/m3、26.39μg/m3、118.61μg/m3和126.05μg/m3,其中:NO2的月均质量浓度变化较小;SO2和颗粒物的最高月均质量浓度都出现在2月;CO月均质量浓度呈现稳步下降的趋势;O3月均质量浓度则逐步上升. PM2.5、PM10、NO2和SO2的质量浓度日变化均呈双峰双谷型.对照点及区域点的O3质量浓度最高,其他种类污染物最高质量浓度出现在交通控制点.北京市大气污染物除O3外都呈现出南部质量浓度较高、向北部逐步递减的特点,O3在城区的质量浓度明显低于其他区域.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号