首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
Summary Plane waves in a linear, homogeneous and transversely isotropic thermoelastic body are discussed on the basis of a unified system of governing equations. It is found that the motion influenced by the thermal field takes place in three coupled modes. Explicit expressions for the phase velocities and attenuation coefficients of these modes in the cases of high and low frequencies are obtained. Results valid in the conventional and generalized thermoelasticity theories are recovered as particular cases. Comparison with the corresponding results obtained in earlier works is made.  相似文献   

2.
The problem considered herein is the dynamic, subsonic, steady-state propagation of a semi-infinite, generalized plane strain crack in an infinite, transversely isotropic, linear viscoelastic body. The corresponding boundary value problem is considered initially for a general anisotropic, linear viscoelastic body and reduced via transform methods to a matrix Riemann–Hilbert problem. The general problem does not readily yield explicit closed form solutions, so attention is addressed to the special case of a transversely isotropic viscoelastic body whose principal axis of material symmetry is parallel to the crack edge. For this special case, the out-of-plane shear (Mode III), in-plane shear (Mode II) and in-plane opening (Mode I) modes uncouple. Explicit expressions are then constructed for all three Stress Intensity Factors (SIF). The analysis is valid for quite general forms for the relevant viscoelastic relaxation functions subject only to the thermodynamic restriction that work done in closed cycles be non-negative. As a special case, an analytical solution of the Mode I problem for a general isotropic linear viscoelastic material is obtained without the usual assumption of a constant Poissons ratio or exponential decay of the bulk and shear relaxation functions. The Mode I SIF is then calculated for a generalized standard linear solid with unequal mean relaxation times in bulk and shear leading to a non-constant Poissons ratio. Numerical simulations are performed for both point loading on the crack faces and for a uniform traction applied to a compact portion of the crack faces. In both cases, it is observed that the SIF can vanish for crack speeds well below the glassy Rayleigh wave speed. This phenomenon is not seen for Mode I cracks in elastic material or for Mode III cracks in viscoelastic material.  相似文献   

3.
V. I. Fabrikant 《Acta Mechanica》2004,172(3-4):181-193
Summary. It is shown that the introduction of two new parameters, similar to those used by the author earlier, allows to simplify dramatically the complete solution of the elliptic crack problem. We consider the cases of both normal and shear loading of the crack. The limiting case of an isotropic body is also considered. The developed results can be used for solving various elliptic contact problems as well.  相似文献   

4.
5.
An analytical solution is given for the displacement and stress distribution produced in the interior of a transversely isotropie solid containing a penny-shaped crack situated in an elastic symmetry plane and axially-loaded. Curves of numerical results are presented for the stress intensity factor and the normal displacement. They show the influence of this type of anisotropy.  相似文献   

6.
Summary. Crack problems in transversely isotropic solids are reexamined from a new point of view. It is shown that, when the crack is on the isotropic plane, the asymptotic forms of the elastic crack-tip fields are identical with those in orthotropic media. The equivalent inclusion method in conjunction with Eshelbys S tensor of a strongly oblate spheroid in transversely isotropic materials is used to solve penny-shaped crack problems. The stress intensity factors corresponding to uniform tension and shear are determined, respectively. Griffiths energy criterion for brittle cracking and Irwins energy release rate are discussed in the present context. Finally, the weight function for an axisymmetrically loaded penny-shaped crack is derived. It is found that the axisymmetric weight function is independent of the material constants and is identical with the isotropic case.AcknowledgementThis work was supported in part by the National Science Council of Taiwan.  相似文献   

7.
8.
An exact solution is proposed for the mixed boundary-value problem in a transversely isotropic half-space. Here, certain arbitrary shear tractions are prescribed inside a circular region, outside of which certain arbitrary tangential displacements are given. The normal stresses are supposed to be known all over the boundary. A particular case is considered, in detail, where normal stresses vanish all over the boundary with the shear tractions vanishing inside the circular region. A closed form expression is obtained for the tangential displacements inside the circular region directly through the displacements outside. As an example, a penny-shaped crack in an infinite transversely isotropic body is considered with arbitrary shear tractions acting on both sides of the crack. The formulae for the tangential displacements inside the circle and the shear stresses outside are obtained. Special cases where uniform shear and a concentrated tangential force arise are also discussed.  相似文献   

9.
This paper presents a boundary element analysis of elliptical cracks in two joined transversely isotropic solids. The boundary element method is developed by incorporating the fundamental singular solution for a concentrated point load in a transversely isotropic bi-material solid of infinite space into the conventional displacement boundary integral equations. The multi-region method is used to analyze the crack problems. The traction-singular elements are employed to capture the singularity around the crack front. The values of stress intensity factors (SIFs) are obtained by using crack opening displacements. The results of the proposed method compare well with the existing exact solutions for an elliptical crack parallel to the isotropic plane of a transversely isotropic solid of infinite extent. Elliptical cracks perpendicular to the interface of transversely isotropic bi-material solids of either infinite extent or occupying a cubic region are further examined in detail. The crack surfaces are subject to the uniform normal tractions. The stress intensity factor values of the elliptical cracks of the two types are analyzed and compared. Numerical results have shown that the stress intensity factors are strongly affected by the anisotropy and the combination of the two joined solids.  相似文献   

10.
The problem of a penny-shaped crack contained in a transversely isotropic cylinder of elastic perfectly-plastic material is considered for the case when the crack is extended by an axial load. The problem is reduced to solving numerically a Fredholm integral equation of the second kind for the width of the plastic zone. Graphical results are presented showing the effect of transverse isotropy upon the width of the plastic zone and these are compared with the results for isotropic materials.  相似文献   

11.
The scattering of a harmonic longitudinal wave by a penny-shaped crack in a transversely isotropic material is investigated using the techniques of Hankel transform. The wave impinges normally on the crack surfaces. A complete contour integration is employed to simplify the expressions of the results. An exact expression of the dynamic stress-intensity factor is obtained as a function of the frequency factor and the anisotropic material constants. The normalized dynamic stress-intensity factor is shown to have different maximum values at different wave frequencies for the sample composite and metallic materials. The distortion of the dynamic crack shape and the displacement at the crack center are also shown to be dependent of the wave frequency and the anisotropy of the material.  相似文献   

12.
In this paper, a general boundary element approach for three-dimensional dynamic crack problems in transversely isotropic bodies is presented for the first time. Quarter-point and singular quarter-point elements are implemented in a quadratic isoparametric element context. The procedure is based on the subdomain technique, the displacement integral representation for elastodynamic problems and the expressions of the time-harmonic point load fundamental solution for transversely isotropic media. Numerical results corresponding to cracks under the effects of impinging waves are presented. The accuracy of the present approach for the analysis of dynamic fracture mechanics problems in transversely isotropic solids is shown by comparison of the obtained results with existing solutions.  相似文献   

13.
G. E. Tupholme 《Acta Mechanica》2009,202(1-4):153-162
An antiplane shear strip crack moving uniformly in transversely isotopic magnetoelectroelastic media when subjected to representative non-constant crack-face loading conditions is studied. Readily calculable explicit closed-form representations are determined and discussed for the components of the stress, electric and magnetic fields created throughout the material. Representative numerical data are presented. Alternative boundary conditions for which corresponding analyses can be derived analogously are listed.  相似文献   

14.
X. Zhao  X. Xie 《Acta Mechanica》2000,143(1-2):35-45
Summary A three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to a pair of suddenly-applied normal line loadings on its faces. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener-Hopf technique. The Cagniard-de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Numerical results are given.  相似文献   

15.
Summary Green's functions for an infinite three-dimensional elastic solid containing a circular crack are derived in terms of integrals of elementary functions. The solid is assumed to be either isotropic or transversely isotropic (with the crack being parallel to the plane isotropy).  相似文献   

16.
Three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to two opposed pairs of shear line loads on its faces. Transform methods are used to reduce the boundary value problem to a set of coupled integral equations that can be solved by the Wiener-Hopf technique. The Cagniard-de Hoop method is employed to invert the transforms. Exact expressions are derived for the mode II and III stress intensity factors as functions of time and position along the crack edge. Some features of the solutions are discussed through numerical results.  相似文献   

17.
The effects of the material anisotropy on the stress intensity factor and on the crack shape are investigated for a penny-shaped crack in a transversely isotropic plate of finite thickness. The surfaces of the crack are subjected to uniform pressures. The plate surfaces are free from stresses for case I while smooth-clamp conditions are prescribed on the plate surfaces for case II. The techniques of Hankel transforms are used to obtain solutions for both cases. The solutions are largely written in terms of the sum and difference of the characteristic roots so that the results can easily be seen as real-value functions for both real and complex roots.Exact expressions for the stress intensity factor and the crack-shape function are obtained as products of dimensional quantities and nondimensional functions which are the stress intensity correction factor and the normalized crack shape function. The nondimensional functions were calculated numerically for three different typical materials which involved both real and complex characteristic roots. The numerical results clearly reveal the effects of the material anisotropy on the stress intensity factor and on the opening of the crack.
Résumé On a étudié les effets de l'anisotropie du matériau sur le facteur d'intensité de contrainte et sur la forme d'une fissure dans le cas d'une fissuration en demi-lune située dans une plaque transversalement isotrope d'épaisseur finie. Les surfaces de la fissure ont été soumises à des pressions uniformes. Les surfaces de la plaque étaient libres de contrainte dans le cas I tandis que l'on prévoyait des conditions correspondant à un clamage léger sur les surfaces de la plaque dans un cas II. Les techniques de transformées de Hankel ont été utlisées pour obtenir les solutions dans les deux cas. Les solutions ont été exprimées en terme de somme et de différence de racines caractéristiques, de sorte que les résultats peuvent aisément être déduits comme des fonctions à valeur réelle de racine réelle et de racine complexe.Les expressions exactes pour le facteur d'intensité de contrainte et pour la fonction de forme de la fissure ont été obtenues comme les produits de fonctions à quantité dimensionnelle et non dimensionnelle qui sont le facteur de correction de l'intensité de contrainte et une fonction de forme de la fissure normalisée. Les fonctions sans dimension ont été calculées par voie numérique dans le cas de trois matériaux différents et typiques, mettant en oeuvre des racines caractéristiques réelles et des racines caractéristiques complexes. Les résultats numériques ont montré clairement les effets de l'anisotropie des matériaux sur le facteur d'intensité de contrainte et sur l'ouverture de la fissure.
  相似文献   

18.
The axisymmetric problem of an infinitely long transversely isotropic elastic fibre perfectly bonded to a dissimilar transversely isotropic elastic matrix containing an annular crack is considered. The annular crack, surrounding the fibre, is subjected to prescribed longitudinal tension. A potential function approach is used to find the solution of the basic equations. The mixed boundary value problem is reduced to the solution of a singular integral equation, which is further reduced, by using Chebyshev polynomials, to a system of algebraic equations.  相似文献   

19.
In this paper, the axisymmetric elasticity problem of an infinitely long transversely isotropic solid cylinder imbedded in a transversely isotropic medium is considered. The cylinder contains an annular or a penny shaped crack subjected to uniform pressure on its surfaces. It is assumed that the cylinder is perfectly bonded to the medium. A singular integral equation of the first kind (whose unknown is the derivative of crack surface displacement) is derived by using Fourier and Hankel transforms. By performing an asymptotic analysis of the Fredholm kernel, the generalized Cauchy kernel associated with the case of `crack terminating at the interface' is derived. The stress singularity associated with this case is obtained. The singular integral equation is solved numerically for sample cases. Stress intensity factors are given for various crack geometries (internal annular and penny-shaped cracks, annular cracks and penny-shaped cracks terminating at the interface) for sample material pairs.  相似文献   

20.
This paper analyzes a square crack in a transversely isotropic bi-material solid by using dual boundary element method. The square crack is inclined to the interface of the bi-material. The fundamental solution for the bi-material solid occupying an infinite region is incorporated into the dual boundary integral equations. The square crack can have an arbitrary angle with respect to the plane of isotropy of the bi-material occupying either finite or infinite regions. The stress intensity factor (SIF) values of the modes I, II, and III associated with the square crack are calculated from the crack opening displacements. Numerical results show that the properties of the anisotropic bi-material have evident influences on the values of the three SIFs. The values of the three SIFs are further examined by taking into account the effect of the external boundary of the internally cracked bi-material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号