首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Wear》2006,260(1-2):40-49
The tribological behaviour of TiCN coating prepared by unbalanced magnetron sputtering is studied in this work. The substrates made from austenitic steel were coated by TiCN coatings during one deposition. The measurements were provided by high temperature tribometer (pin-on-disc, CSM Instruments) allowing measuring the dependency of friction coefficient on cycles (sliding distance) up to 500 °C. The evolution of the friction coefficient with the cycles was measured under different conditions, such as temperature or sliding speed and the wear rate of the ball and coating were evaluated. The 100Cr6 balls and the Si3N4 ceramic balls were used as counter-parts. The former were used at temperatures up to 200 °C, the latter up to 500 °C. The wear tracks were examined by optical methods and SEM. The surface oxidation at elevated temperatures and profile elements composition of the wear track were also measured.The experiments have shown considerable dependency of TiCN tribological parameters on temperature. Rise in temperature increased both friction coefficient and the wear rate of the coating in case of 100Cr6 balls. The main wear mechanism was a mild wear at temperatures up to 200 °C; fracture and delamination were dominating wear mechanisms at temperatures from 300 to 500 °C.  相似文献   

2.
Tribological properties of Fe–Mo type disk specimens were investigated against ASTM 52100 steel balls under the lubrication of poly-alpha-olefin (PAO) and PAO containing 1.5 mass% alkyl-phosphonic acid-triazole-methanamine (PN additive). Both the Fe7Mo6-based alloy and Mo disk specimens exhibited lower friction and lower wear rates than the Fe and gray cast iron disk specimens under the lubrication of PAO. The friction coefficients of the Fe7Mo6-based alloy disk specimens were reduced to 0.07 by adding 1.5 mass% PN additive to PAO. No wear volume loss was observed on the Fe7Mo6-based alloy disk specimens when they were lubricated with PAO containing 1.5 mass% PN additive.  相似文献   

3.
Rolling contact fatigue (RCF) experiments were performed on AISI M50 bearing balls using a single ball test rig to investigate the evolution of the material properties within the RCF-affected subsurface region. Using a combination of micro-indentation and miniature compression testing methods, the influence of contact stress, initial residual stresses, and the number of contact cycles on the resulting evolution of material properties was investigated. It was found that the balls with initial residual compressive stresses show less change in material properties after RCF loading than the balls without such initial residual stresses. The formation of a light etching region (LER) is shown to not correlate with a decrease in material strength and hardness, but it does serve as a predictor for failure due to spall.  相似文献   

4.
《Wear》2007,262(5-6):655-665
The structure, hardness, friction and wear of tungsten nitrides prepared by d.c. reactive magnetron sputtering were investigated. The coatings were deposited with different nitrogen to argon ratios; the total pressure was kept constant. The tribological tests were performed on a pin-on-disc tribometer in terrestrial atmosphere with 100Cr6 steel, Al2O3 and Si3N4 balls as sliding counter-bodies. The wear tracks, the ball-wear scars and the wear debris were analysed by scanning electron microscopy in order to characterize the dominant wear mechanisms.The coatings exhibited different phases as a function of the nitrogen content: films with low N content exhibited the α-W phase; β-W phase was dominant for nitrogen contents from 12 to 15 at.% and β-W2N was observed for nitrogen content higher that 30 at.%. The mechanical and tribological properties of the tungsten nitride coatings were strongly influenced by the structure. The hardness and the Young's modulus values were in the ranges (29–39 GPa) and (300–390 GPa), respectively; the lowest values correspond to the coatings with the highest nitrogen content. Generally, the friction and wear rate of tungsten nitride coatings sliding against ceramic balls increased with nitrogen content reaching a maximum at 12 at.%; further increase of the nitrogen content led to a decrease of the friction and wear. The sliding with the steel balls did not wear the coatings under the selected testing conditions.  相似文献   

5.
Helong Yu  Yi Xu  Peijing Shi  Hongmei Wang  Min Wei  Keke Zhao  Binshi Xu 《Wear》2013,297(1-2):802-810
Surface-modified serpentine powders with an average size of 1.0 μm were dispersed into mineral base oil to improve the lubricating properties of oil, as well as to generate a thin tribofilm on the worn surface. SEM, TEM, nano-indentation and Stribeck testing were performed to study the morphology, microstructure, micromechanical properties and tribological behavior of the tribofilm, respectively. Results show that a nanocrystalline tribofilm, with a thickness of 500–600 nm, is formed on the worn surface under the lubrication of oil with 1.5 wt% serpentine. The film is mainly composed of Fe3O4, FeSi, SiO2, AlFe and Fe-C compound (Fe3C). A phenomenological model of the tribofilm generated by serpentine was developed based on the experimental results. The excellent mechanical properties, reinforced phase of embedded particles and porous structure of the tribofilm contribute to the reduction of friction and wear, especially in the case of boundary and mixed lubrication.  相似文献   

6.
《Wear》2002,252(5-6):518-527
The impregnation of inorganic fullerene-like nanoparticles of WS2 (IF) allows to improve effectively the tribological properties of powdered materials in comparison to the impregnation of oil or commercially available layered WS2 (2H) particles. The main goal of this work was to determine the dominant lubrication regimes under friction of the bronze, iron, and iron–nickel porous matrixes impregnated with 2H and IF solid lubricants. The tribological tests were performed at laboratory atmosphere (humidity ∼50%) using a ring-on-block tester at the sliding speed of V=1 m/s, and the loads of 150–1000 N. The wear of the metal bodies was measured by an eddy current probe system and by weighting of the samples before and after the test. In order to evaluate the radial clearance, the profiles of wear blocks were analyzed by profile projector. Than these data were used in the calculation of the Sommerfeld reciprocal values. Friction and wear results were presented as the Stribeck curves. The critical Sommerfeld reciprocals were evaluated from these curves. The Stribeck curves were compared with the Morgan’s curves for different ranges of non-dimensional permeability, Ψ. These results are used then in calculation of the permeability, Φ. Three lubrication regimes as: quasi-hydrodynamic, boundary or mixed, and dry friction were revealed under friction of porous samples in the load-range studied. It was found that the impregnation of IF nanoparticles provides the regime of quasi-hydrodynamic lubrication in the widest range of loads in comparison to the reference sample and the sample impregnated with 2H–WS2. Fe–Ni samples exhibited the highest wear resistance and provided the widest range of quasi-hydrodynamic lubrication in comparison to bronze and iron powdered composites. The effect of IF on the regimes of lubrication is explained on the base of the third-body model. It is expected that the sliding/rolling of the IF nanoparticles in the boundary of the first bodies and in between the wear particles (third-body) facilitate the shear of the lubrication film and thus provide the quasi-hydrodynamic regime of friction. It is supposed that the roll shape of IF nanoparticles allows to release the IF from the pores to contact surfaces.  相似文献   

7.
T. Hermann  T.A. Blanchet  N.F. Panayotou 《Wear》2010,268(1-2):126-132
Self-mated wear and friction of Alloy 600 superalloy was studied in a water-submersed ring-on-rod configuration, loading the side of a 6.35 mm diameter rod across the flat surface of a rotating annular ring of 100 mm outer diameter and 70 mm inner diameter producing two sliding contacts along the ring. Tests were conducted at sliding speeds of 0.178 and 0.330 m/s for sliding distances of 100 m. Normal loads of 51 and 204 N were applied, and initial Ra surface roughnesses of the rings along the sliding direction were either smooth (~0.2 μm) or rough (~7.5 μm). Increased initial ring roughness caused a ~20-fold increase in rod wear at the lighter load, whereas at the heavier load increased initial roughness only caused a ~4-fold increase in wear. At lower initial ring roughness the 4-fold decrease in normal load caused a large (one order-of-magnitude) decrease in rod wear, whereas for rings of higher initial roughness the 4-fold decrease in normal load caused only minor (2-fold or less) decreases in rod wear. Wear during this 100 m sliding distance only experienced a minor effect from the 1.8-fold change in sliding speed, as did friction. In all cases friction coefficient rapidly settled into the range 0.6–0.7, except in the cases of lower load on rings of lower initial roughness where friction coefficient remained above 1 for most of this sliding duration. At this lower load the initial ~0.2 μm rod roughnesses increased to nearly 0.8 μm by the 100 m sliding distance, whereas at the higher load this same sliding distance resulted in roughnesses returning near to the initial 0.2 μm. It was hypothesized more highly loaded cases also went through initial roughening prior to smoothening back to 0.2 μm roughness within the 100 m sliding distance, and given additional sliding the more lightly loaded cases would also experience subsequent smoothening. Increasing sliding distance to 400 m, roughnesses indicated a smoothening back to 0.2 μm level during those lightly loaded tests, with friction coefficient correspondingly dropping from 1 into the 0.6–0.7 range observed in all other cases. Extended sliding to 400 m at light loading against rings of lower initial roughness also allowed a rod wear rate which increased with increased sliding distance to be observed, approaching the same rate observed against initially rough rings within the 100 m sliding distance.  相似文献   

8.
Vegetable oil is a low toxic, excellent biodegradable and renewable energy source used as an ideal lubricating base oil in machining. Castor oil exhibits good lubrication performance but poor mobility, which limits its application especially in precision grinding. The main objective of the work presented to obtain optimal mixed vegetable based-oil and optimal nanoparticles adding concentration in grinding Ni-based alloy with minimum quantity lubrication. An experimental investigation is carried out first to study the different vegetable oils with excellent mobility mixed with castor oil. The lubrication property of the oil was evaluated in terms of grinding force, force ratio, specific grinding energy, and surface roughness. Based on the test conditions, it is found that soybean/castor mixed oil obtained the optimal results (μ= 0.379, U = 83.27 J/mm3 and Ra = 0.325 μm) and lubricating effect compared with castor oil and other mixed base oils. To further explore the lubricating capability of soybean/castor mixed oil, MoS2 nanoparticles which have excellent lubricating property were added into the soybean/castor mixed oil to prepare different concentrations nanofluids. From the present study, it can be concluded that 8% mass fraction of the oil mixture should be added to obtain the optimal machining results, with the lowest force ratio (0.329), specific energy (58.60 J/mm3), and average grinding temperature (182.6 °C). Meanwhile, better surface microtopography of ground parts and grinding debris morphologies were also observed for the machining conditions.  相似文献   

9.
In this study, Fe–X at% Si alloy (X=70.5, 80.0 and 96.0), Re–64.3 at% Si and Mo–66.7 at% Si disk specimens were prepared by spark plasma sintering, and their friction and wear properties were investigated when they were slid against Si3N4 ball specimens in ethyl alcohol. The friction and wear properties of Si ingots were also examined. Fe–70.5 at% Si, Fe–80.0 at% Si, Fe–96.0 at% Si and Re–64.3 at% Si disk specimens exhibited friction coefficients as low as 0.15. It is considered that the low friction of the Fe–70.5 at% Si, Fe–80.5 at% Si and Fe–96.0 at% Si disk specimens was due to the formation of low friction silicon alkoxide and polyoxysilane on the worn surfaces of the disk specimens and the paired ball specimens. Re–64.3 at% Si disk specimens exhibited the highest microvickers hardness of all the disk specimens prepared in this study. In addition, the microvickers hardness of the Fe–X at% Si (X=70.5, 80.0, 96.0 and 100) disk specimen increased with increasing the Si content. Moreover, it was difficult to obtain dense Fe–90.0 at% Si disk specimens by sintering the annealed and crushed Fe–90.0 at% Si powder. However, dense Fe–96.0 at% Si disk specimens could be obtained by sintering the Fe–90.0 at% Si powder at 1403 K.  相似文献   

10.
In this paper, precision hard turning is proposed for the finishing of the AISI 52100 bearing components to improve rolling contact fatigue life. This finishing process induces a homogenous microstructure at surface and subsurface layers. Fatigue life tests performed on a twin-disk machine show that rolling contact fatigue life increases as Ra value decreases. The bearing components reached 0.32 million cycles for Ra=0.25 μm and 5.2 million cycles for Ra=0.11 μm. In comparison, the bearing components achieved 1.2 million cycles with grinding (Ra=0.2 μm) and 3.2 million cycles with grinding followed by honing (Ra=0.05 μm) respectively.  相似文献   

11.
The presented 3D-ball plate is used for testing machine tools with a workspace of 500 mm × 500 mm × 320 mm. The artefact consists of a 2D-ball plate which is either located by a kinematic correct coupling on a base plate or on a spacer. The spacers are placed between the base plate and the ball plate and are also kinematic coupled to the other elements of the artefact. The kinematic couplings provide a high repeatability of the measurement setup. Because of the specific application the known calibration procedures for 2D-ball plates are not applicable.A calibration method for the pseudo-3D-artefact on a coordinate measuring machine (CMM) is presented, with the aim to minimise the influence of geometric CMM errors. Therefore a computer simulation is used to analyse the effects of these disturbing errors on the calibration of the ball plate and the spacers. Using a reversal method, the plate is measured at four different horizontal positions after rotating the ball plate around its vertical axis. A couple of the CMM errors, e.g., a squareness error C0Y between the X- and Y-axis of the CMM, can be eliminated by that method—others have to be determined with additional measurements, e.g., the positioning errors EXX or EYY of the X- and Y-axis, respectively. The paper also contains a measurement uncertainty estimation for the calibration by use of experiments, tolerances and Monte Carlo-simulations. The achieved uncertainty for ball positions in the working volume is less than 2.1 μm (coverage factor k = 2).  相似文献   

12.
Myo Minn  Sujeet K. Sinha 《Wear》2012,274(1-2):528-535
Poly(etheretherketone) (PEEK) is a high strength and high temperature engineering polymer. However, its tribological performance is not very good in its pure form unless fillers or fibers are added to form composites. As polymers are often used for applications where traditional oil based lubrication may become an issue, water-based lubrication is desirable. This paper explores the lubrication performance of a natural fibrinolytic enzyme, nattokinase, found in fermented soybean (natto) in the aqueous solution. Pins of PEEK were slid against a steel disk in a pin-on-disk tester with the aqueous lubrication. The counterface disk material was a tool steel (Ra=0.37 μm). Tests were conducted at a rotational speed of 100 rpm and a normal load of 80 N. For comparison, tests were also conducted in NaCl solution. Nattokinase aqueous solution provides a coefficient of friction of 0.2 between PEEK and steel as compared to 0.3–0.35 for dry condition. The specific wear rates of PEEK for dry, deionized water, NaCl solution and aqueous nattokinase solution conditions were 10.5×10?6, 51.6×10?6, 228×10?6 and 8.8×10?6 mm3/N m, respectively. The fibrinolytic nattokinase enzyme provides lubricity with alkalinity reducing corrosion and eventually reducing wear.  相似文献   

13.
Lubrication conditions and blank holder force (BHF) are two key processing parameters in deep drawing. This is more obvious in micro forming because of the miniaturization of the specimen size. Micro conical–cylindrical cups with internal conical bottom diameter of only 0.4 mm were well formed. The influences of lubrication conditions and BHF on micro deep drawing of micro conical–cylindrical cups were investigated using a micro blanking–deep drawing compound mold. Pure copper C1100 with a thickness of 50 μm, which was annealed at 450 °C for 2 h in vacuum condition, was chosen as the specimen material. The experiments were conducted on a universal testing machine with a forming velocity of 0.05 mm/s under 4 kinds of lubrication conditions and BHF. The experimental results showed that a micro conical–cylindrical cup with internal conical bottom diameter of only 0.4 mm was well formed, and the limiting drawing ratio (LDR) reached 2.1. The polyethylene (PE) film, which decreased the drawing force and increased the drawing ratio (DR), was superior to castor oil, petroleum jelly and dry friction, and can be chosen as a proper lubricant for micro deep drawing. The rim of the micro cup seriously wrinkled when BHF was less than 4.2 N. The bottom of the micro cup cracked when the BHF was larger than 5.6 N.  相似文献   

14.
Yinping Ye  Jianmin Chen  Huidi Zhou 《Wear》2009,266(7-8):859-864
The friction and wear performances of bonded MoS2 solid film lubricants with the counterpart steel ball rubbing were investigated in fretting wear conditions in order to inquire into the load-carrying capacity and wear mechanisms of bonded MoS2 solid film lubricants under dry friction conditions. Experimental results show that the bonded MoS2 solid film lubricants have excellent anti-friction and wear-resistance performances within a wide load range between 20 N and 800 N and within a wide oscillatory frequency range between 5 Hz and 30 Hz. It is found through analyses of the transfer films formed in the surface of the counterpart steel ball investigated by SEM, XPS and AES, that the thickness of the transfer film formed is about 38 nm and the oxidation of MoS2 in the transfer films does not occur during dry friction process. The high load and frequency promote the formation of a compact transfer films. The compact transfer films are believed to be the predominant mechanism giving rise to high load-carrying capacity, and excellent wear-resistance performances of the bonded MoS2 solid film lubricants.  相似文献   

15.
Ziqi Sun  Ling Wu  Meishuan Li  Yanchun Zhou 《Wear》2009,266(9-10):960-967
Reciprocating ball-on-flat dry sliding friction and wear experiments have been conducted on single-phase γ-Y2Si2O7 ceramic flats in contact with AISI 52100 bearing steel and Si3N4 ceramic balls at 5–15 N normal loads in an ambient environment. The kinetic friction coefficients of γ-Y2Si2O7 varied in the range over 0.53–0.63 against AISI 52100 steel and between 0.51–0.56 against Si3N4 ceramic. We found that wear occurred predominantly during the running-in period and it almost ceased at the steady friction stage. The wear rates of γ-Y2Si2O7 were in the order of 10?4 mm3/(N m). Besides, wear debris strongly influenced the friction and wear processes. The strong chemical affinity between γ-Y2Si2O7 and AISI 52100 balls led to a thick transfer layer formed on both contact surfaces of the flat and counterpart ball, which changed the direct sliding between the ball and the flat into a shearing within the transfer layer. For the γ-Y2Si2O7/Si3N4 pair, a thin silica hydrate lubricant tribofilm presented above the compressed debris entrapped in the worn track and contact ball surface. This transfer layer and the tribofilm separated the sliding couple from direct contact and contributed to the low friction coefficient and wear rate.  相似文献   

16.
Aluminum alloy and its composites appear to have a good future as a candidate material for engineering and structural components. Finishing of these materials is a big challenge as they are heterogeneous in nature having abrasive particles randomly distributed and oriented in the matrix material. Metal matrix composite (MMC-aluminum alloy and its reinforcement with SiC) workpieces were initially ground to a surface roughness value in the range of 0.6 ± 0.1 μm, and later were finished to the Ra value of 0.25 ± 0.05 μm by using Abrasive Flow Finishing (AFF) process. The effects of different process parameters, such as extrusion pressure, number of cycles and viscosity of the medium were studied on a change in average surface roughness (ΔRa) and material removal. The relationship between extrusion pressure and ΔRa shows an optimum at about 6 MPa. In the same way, the relationship between weight percentage of processing oil (plasticizer) and ΔRa also shows an optimum at 10 wt%. Further, an increase in workpiece hardness requires more number of cycles to achieve the same level of improvement in ΔRa. Material removal also increases with an increase in extrusion pressure and number of cycles while it decreases with an increase in processing oil content in the medium. It is also concluded that the mechanism of finishing and material removal in case of alloys is different from that in case of MMC.  相似文献   

17.
《Wear》2007,262(7-8):826-832
The non-lubricated, sliding friction and wear behavior of Ti3Si(Al)C2 and SiC-reinforced Ti3Si(Al)C2 composites against AISI 52100 bearing steel ball were investigated using a ball-on-flat, reciprocating tribometer at room temperature. The contact load was varied from 5 to 20 N. For monolithic Ti3Si(Al)C2, high friction coefficients between 0.61 and 0.90 and wear rates between 1.79 × 10−3 and 2.68 × 10−3 mm3 (N m)−1 were measured. With increasing SiC content in the composites, both the friction coefficients and the wear rates were significantly decreased. The friction coefficients reduced to a value between 0.38 and 0.50, and the wear rates to between 2.64 × 10−4 and 1.93 × 10−5 mm3 (N m)−1 when the SiC content ranged from 10 to 30 vol.%. The enhanced wear resistance of Ti3Si(Al)C2 is mainly attributed to the facts that the hard SiC particles inhibit the plastic deformation and fracture of the soft matrix, the oxide debris lubricate the counterpair, and the wear mode converts from adhesive wear to abrasive wear during dry sliding.  相似文献   

18.
Micro-milling is a promising approach to repair the micro-defects on the surface of KH2PO4 (KDP) crystal. The geometrical parameters of micro ball end mill will greatly influence the repairing process as a result of the soft brittle properties of KDP crystal. Two types of double-edged micro ball end mills were designed and a three-dimensional finite element (FE) model was established to simulate the micro milling process of KDP crystal, which was validated by the milling experiments. The rake angle of −45°, the relief angle of 45° and the cutting edge radius of 1.5–2 μm were suggested to be the optimal geometrical parameters, whereas the rake angle of −25° and the relief angle of 9° were optimal just for micro ball end mill of Type I, the configuration with the rake angles ranging from 0° to 35°, by fully considering the cutting force, and the stress–strain distribution over the entire tool and the cutting zone in the simulation. Moreover, the micro polycrystalline diamond (PCD) ball end mills adopting the obtained optimal parameters were fabricated by wire electro-discharge machining (WEDM) and grinding techniques, with the average surface roughness Ra of tool rake face and tool flank face ∼0.10 μm, and the cutting edge radius of the tool ∼1.6 μm. The influence of tool's geometrical parameters on the finished surface quality was verified by the cutting experiments, and the tool with symmetric structure was found to have a better cutting performance. The repairing outlines with Ra of 31.3 nm were processed by the self-fabricated tool, which could successfully hold the growth of unstable damage sites on KDP crystal.  相似文献   

19.
The effect of reaction temperature on the formation of a carbon layer on the surface of SiC has been investigated. Subsequently, the tribological properties of the formed carbon layers were studied. The experimental procedure involved exposing reaction-bonded SiC balls to a flowing gas mixture of 5% Cl2, 2.5% H2, and Ar at a high temperature of 800, 1000, or 1200 °C. A ball-on disk tribometer was used to investigate the friction and wear behavior of the treated specimens. While partially unreacted SiC phases were observed in the layer modified at 800 °C, rhombohedral graphite crystals were formed in the layer modified at 1200 °C. Compared to untreated SiC, the treated SiC materials were found to have relatively low friction coefficients and better wear resistance. Increasing the treatment temperature was found to improve the tribological performance of the resulting surface-modified SiC balls. A possible reason for this tribological improvement has been discussed based on the observed carbon phases.  相似文献   

20.
The effects of two different textures (a 3D negative fingerprint texture and a honeycomb texture) on the tribological performance of SU-8 polymer surface have been investigated with a ball-on-disc tribometer. Friction and wear behaviors of the textured surfaces are conducted against a 4 mm diameter silicon nitride (Si3N4) ball counterface. The coefficient of friction for the negative fingerprint textured surface (μ=∼0.08) is much lower than that of the untextured surface (∼0.2) and the honeycomb textured surface (∼0.41) under a normal load of 100 mN and a rotational speed of 2 rpm. The coefficients of friction of the textured surfaces decrease with increasing normal loads between 100 mN and 300 mN. Above the normal load of 300 mN, the coefficient of friction of the negative fingerprint textured surface increases due to the occurrence of plastic deformation. The honeycomb textured surface has shown the highest coefficient of friction. The wear durability tests are also conducted at a normal load of 100 mN and a rotational speed of 500 rpm on the untextured/textured surfaces on SU-8 in the presence of an overcoat of a nano-lubricant, perfluoropolyether(PFPE). Six samples i.e. the untextured surface (Si/SU-8 and Si/SU-8/PFPE), the 3D negative fingerprint textured surface (Si/SU-8/FP and Si/SU-8/FP/PFPE) and the honeycomb textured surface (Si/SU-8/HC and Si/SU-8/HC/PFPE), each with and without PFPE nano-lubricant, have been investigated for their tribological behaviours. The negative fingerprint pattern on SU-8 with PFPE coating has shown the highest wear life of 60,000 cycles under a normal load of 100 mN. The reasons for excellent tribological performance of 3D fingerprinted SU-8 surface are analyzed using the Hertzian contact area calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号