首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用SBR法处理含葡萄糖和石油烃的人工废水,实验结果表明:在生物处理过程中,微生物首先快速吸附、降解葡萄糖,石油烃类随后也能得到有效降解;在烃类与葡萄糖共存的情况下,微生物在胞外产生更多的蛋白类物质:含石油烃和不合石油烃反应器中污泥胞外蛋白类物质平均含量分别为82.9和58.1mg/gVSS,EPS的乳化指数分别为50%和12.5%,说明胞外的蛋白类物质具有一定的表面活性,可以将烃类在一定程度上乳化,从而有利于微生物对烃类的接触和摄取。  相似文献   

2.
Polycyclic Aromatic Hydrocarbons (PAHs) are a major group of pollutants whose occurrence in the environment is mainly of anthropogenic origin. In this paper, we examine the effect of topographical slope exposure on PAH contamination and seasonal change in PAH concentrations in soils. We collected soil samples on three dates in 2007 (early May, end of July and beginning of November) from south- and north-facing aspects at 1900 m a.s.l. in the central Italian Alps. We found greater PAH contamination in soils from a north-facing slope than in those from a south-facing slope at all seasons. We calculated North-South Enrichment Factors as the ratio between the concentrations measured in soils from northern and southern aspects. These ratios ranged from 1.4 to 1.9 for lighter PAHs (from 2 to 4 rings). These values are consistent with theoretical calculations based on temperature-specific octanol-air partition coefficients (predicted North-South Enrichment Factors range from 1.6 to 2.0). For heavier PAHs (from 5 to 6 rings), smaller differences were observed between soils from northern and southern aspects, due to the gas/particle distribution of these compounds. We also found consistent differences in normalised PAH concentrations across the three sampling periods. The majority of compounds showed a significant decreasing trend from the beginning of May to the end of July, due to the annual cycles of physical processes (deposition vs. volatilisation) and biological processes (uptake and/or biotransformation). Only a few compounds showed different trends, presumably due to season-specific local emission sources.  相似文献   

3.
研究了高效石油降解茵(邻单胞菌属)对水体沉积物中石油污染物的处理效果,以及微生物接种量、石油烃初始浓度和上层水体中溶解氧浓度对其降解效果的影响.结果表明,微生物接种量越多,石油烃去除率越高,加入30 mL浓度为105CFU/mL的菌悬液时,沉积物中石油烃的去除率为34.94%;沉积物中石油烃初始浓度过高或过低均不利于石油烃降解,当试验土样中石油烃浓度为107.15 mg/kg时,石油烃的去除率为77.30%;水中溶解氧浓度的提高可以加速石油烃的降解,密闭曝气状态下水中DO为7.09 mg/L时,石油烃的去除率为64.95%.  相似文献   

4.
Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and effective tool in the treatment of water contaminated with BTEX mixture. Therefore, the raw petroleum refinery effluent might be a source of hydrocarbon-biodegrading microorganisms.  相似文献   

5.
6.
Large amounts of nitrates are accumulating in the Hula Valley soils and then subsequently being leached to the Sea of Galilee. The nitrate concentration in the soil has been significantly reduced by induced denitrification. Reducing conditions have been achieved by controlled sprinkling of previously dried soil.  相似文献   

7.
8.
An "immobilized cell airlift bioreactor", was used for the aerobic bioremediation of simulated diesel fuel contaminated groundwater and tested with p-xylene and naphthalene in batch and continuous regimes. The innovative design of the experiments consists of two stages. At the first stage "immobilized soil bioreactor" (ISBR) was used to develop an efficient microbial consortium from the indigenous microorganisms, which exist in diesel fuel contaminated soil. The concept of ISBR relies on the entrapment of the soil particles into the pores of a semi-permeable membrane, which divides the bioreactor into two aerated and non-aerated portions. The second stage involves inoculating the "immobilized cell air lift bioreactor" with the cultivated microbial consortia of the first stage. Immobilized cell airlift bioreactor has the same configuration as ISBR except that in this bioreactor instead of soil, microorganisms were immobilized on the fibers of the membrane. The performance of a 0.83 L immobilized cell airlift bioreactor was investigated at various retention time (0.5-6 h) and concentrations of p-xylene (15, 40 and 77 mg/L) and naphthalene (8, 15 and 22 mg/L) in the continuous operation. In the batch regime, 0.9L bioreactor was operated at various biodegradation times (15-135 min) and concentrations of p-xylene (13.6, 44.9 and 67.5 mg/L) and naphthalene (1.5 and 3.8 mg/L). Under the conditions of the complete biodegradation of p-xylene and naphthalene, the obtained volumetric biodegradation rates at biomass density of 720 mg/L were 15 and 16 mg/L h, respectively.  相似文献   

9.
10.
Microbiological degradation of phenol and some of its alkyl-derivatives (p-cresol, 4-n-propylphenol, 4-i-propylphenol, 4-n-butylphenol, 4-sec-butylphenol, 4-t-butylphenol, and 4-t-octylphenol) was examined under both aerobic and anaerobic conditions in seven Japanese paddy soils. Aerobic biodegradation of phenol derivatives was detected in all the paddy soils examined. The half-lives ranged from 2 to 19 days. The aerobic degradation rate of 4-t-octylphenol was correlated inversely with the total carbon contents of paddy soils, and there were significant inverse correlations between the aerobic degradation rate and the size of alkyl groups of alkylphenols. Anaerobic biodegradation of phenol and p-cresol was detected in three soils with the half-lives ranging from 24 to 260 days for phenol and from 11 to 740 days for p-cresol, respectively. The three soils were characterized by low contents of nitrate and iron oxides. Other soil properties did not show any significant correlations with the anaerobic degradation rates. In one soil, we found for the first time anaerobic biodegradation of 4-n-propylphenol. However, the other five compounds (4-i-propylphenol, 4-n-butylphenol, 4-sec-butylphenol, 4-t-butylphenol and 4-t-octylphenol) were not degraded over 224 days of incubation. These results suggest that phenol and all the alkylphenols were degraded within several days when paddy soil is not flooded and so under aerobic conditions. Under flooded and anaerobic conditions, 4-n-propylphenol would be degraded as well as phenol and p-cresol while alkylphenols with long and branched alkyl chains were hardly degraded at all.  相似文献   

11.
12.
In Brazil, most gas stations and terminals store tanks containing hydrated ethanol, gasohol and diesel. In case of spills, it is possible that a high aqueous ethanol concentration can facilitate the transfer of hydrocarbons into the aqueous phase, enhancing contaminant concentrations in groundwater, a process called cosolvency. This study investigates the cosolvency effect of ethanol on the aqueous solubility of mono- and polycyclic aromatic hydrocarbons, and presents a simple log-linear model to predict this effect under equilibrium conditions. Cosolvency experiments were carried out in batch reactors under equilibrium conditions for pure mono- and polycyclic aromatic hydrocarbons, gasohol and diesel. A linear relationship between cosolvency power and Kow was determined, which allows predictions of the increase of aromatic hydrocarbon solubility due to the presence of ethanol. Results indicate that cosolvency would be significant only for high aqueous ethanol concentrations (higher than 10%). Under these conditions, cosolvency may be critical only in cases of large gasohol spills or in simultaneous releases of neat ethanol and other fuels. In this way, the hydrophobic and toxic polycyclic aromatic hydrocarbons (PAHs), that are usually present in minor aqueous concentrations in fuel spills without ethanol, may be dissolved in larger amounts in groundwater.  相似文献   

13.
Complex distributions of hydrocarbons occur in most aquatic sediments. Total concentrations can range from a few parts per million in non-polluted intertidal and oceanic areas to parts per thousand in heavily contaminated estuarine, lake and near-shore environments. Iatroscan TLC-FID provides a quick assessment of the total hydrocarbon load, but capillary GC, HPLC and GC-MS are essential for obtaining detailed composition data from which information on possible sources can be derived. Alkenes from microalgae, such as n-C21:6, n-C17:1 and unusual C25 and C30 isoprenoid alkenes, are often the most abundant single components in sedimentary hydrocarbon distributions. Some hydrocarbons are also produced from diagenetic transformation of functionalised lipids present in the sediment. Long-chain alkanes typical of plant waxes can be important constituents, even in marine sediments far from the coast. These distributions display a strong predominance of odd chain lengths, whereas n-alkane distributions in oils usually show little or no predominance of either odd or even chain lengths. However, the presence of this type of distribution in a sediment may not indicate petroleum contamination since biological sources for similar distributions are now recognised. Petroleum-derived residues are common in coastal and estuarine areas, particularly those near urban or industrial centers. This contamination is readily seen in capillary gas chromatograms of the alkanes as an unresolved complex mixture (UCM). The source of the oil can often be deduced from characteristic distributions of biomarker steranes, rearranged steranes, hopanes and methyl hopanes determined by capillary gas chromatography-mass spectrometry. Methyl hopanes are major polycyclic alkanes in oils from carbonate source rocks, such as those from the Middle East, but are uncommon in Australian oils. GC-MS fingerprinting techniques show that lubricating oils are a major source of hydrocarbon pollution in many estuaries and coastal areas around Australia. It has been estimated that natural oil seeps may also contribute as much as 10% of the hydrocarbons in the global marine environment. Examples of this include major oil seepage in the Gulf of California and the widespread occurrence of bitumen strandings on South Australian beaches. Examples from marine and estuarine environments around Australia are presented to illustrate the use of modern analytical techniques to identify, quantify and determine the origins of hydrocarbons in aquatic sediments.  相似文献   

14.
Environmentally persistent aromatic hydrocarbons known as unresolved complex mixtures (UCMs) derived from crude oil can be accumulated by, and elicit toxicological responses in, marine organisms (e.g. mussels, Mytilus edulis). Comprehensive two-dimensional gas chromatography time-of-flight mass-spectrometry (GC × GC-ToF-MS) previously revealed that these UCMs included highly branched alkylated aromatic hydrocarbons. Here, the effects of biodegradation on the toxicity and chemical composition of an aromatic UCM hydrocarbon fraction isolated from Tia Juana Pesado (TJP) crude oil were examined. 48 h exposure of mussels to the aromatic hydrocarbon fraction (F2) resulted in tissue concentrations of 900 µg g− 1 (dry wt.) and ∼ 45% decrease in clearance rate. Over 90% of the hydrocarbon burden corresponded to an UCM. Following a 5 day recovery period, GC × GC-ToF-MS analysis of the tissues indicated depuration of most accumulated hydrocarbons and clearance rates returned to those observed in controls. To assess the potential of biodegradation to reduce UCM toxicity, TJP F2 was exposed to bacteria isolated from Whitley Bay, UK, for 46 days. Mussels exposed to the undegraded TJP F2 from the abiotic control exhibited a reduction in clearance rate comparable with values for the pure crude oil TJP F2. Clearance rates of mussels exposed to biodegraded TJP F2 were statistically similar to seawater controls, suggesting biodegradation had reduced the TJP F2 toxicity. GC × GC-ToF-MS analysis revealed the same compound groups in the tissue of mussels exposed to pure TJP F2, undegraded TJP F2 and biodegraded TJP F2 samples; however > 300 fewer compounds were observed in the biodegraded (954 compounds) compared to the undegraded TJP F2 (1261). The compound distributions were markedly different, possibly accounting for the decrease in toxicity. Extraction and analysis of pelleted bacterial cell material revealed that a significant proportion of the TJP F2 had adsorbed onto the cells. Thus extreme care must be taken in interpreting biodegradation data from recalcitrant UCM hydrocarbons.  相似文献   

15.
Lee PH  Ong SK  Golchin J  Nelson GL 《Water research》2001,35(16):3941-3949
Bioremediation of coal tar-contaminated soils containing polycyclic aromatic hydrocarbons (PAHs) is highly challenging because of the low solubility and strong sorption properties of PAHs. Five coal tar-contaminated soils from former manufactured gas plant (MGP) sites were pretreated with two solvents, acetone and ethanol to enhance the bioavailability of the PAH compounds. The biodegradation of various PAHs in the pretreated soils was assessed using soil slurry reactors. The total PAH degradation rates for soils pretreated with solvents were estimated to be about two times faster than soils that were not pretreated with solvents. For example, the total PAH first order degradation rate constants were 0.165+/-0.032, 0.147+/-0.020, and 0.076+/-0.009 day(-1) for Vandalia (EXC) soil that were pretreated with acetone, ethanol, and with no solvent, respectively. A distinctive advantage for soils pretreated with solvents was the enhanced removal of 5-ring PAH compounds such as benzo(a)pyrene and to a limited extent 4-ring compounds such as chrysene. Even for soils with 3.5% or more organic carbon content (two soils out of five), the degradation rate constants of chrysene were found to be two times faster than soils that were not pretreated. The degradation rate constants of benzo(a)pyrene were enhanced by 2-6 times for all five contaminated soils that were pretreated with solvents. To further elucidate trends that control the solvent treatment, the percent improvement in degradation rate constants (100 x rate constants for pretreated soils/rate constants for non-treated soils) for 16 PAHs were found to correlate well with the PAH partition coefficients (K(oc)). Except for phenanthrene and the clay fraction of the soil, correlations between the percent improvement in degradation rates constants and several physical properties of the soils were poor and sporadic. This implies that the enhancement in PAH availability using solvent treatment was driven by the distribution of the PAHs between the solvent and the adsorbed PAHs.  相似文献   

16.
To provide for fail-safe construction when heavy loads are applied to foundations (pressure of up to 1.0 MPa and more), beds formed from clayey soils should be analyzed with respect to bearing capacity (first limiting state) without restricting ourselves to special cases stipulated in the Construction Rules and Regulations. As a basis of analysis of the bearing capacity of beds, it is proposed to adopt a computational scheme developed by the author where there is no uplift of soil, and the latter is consolidated downward in conformity with the author’s new concept concerning the failure of soil in a bed. Basic notions of the paper were presented at the Gersevanov Lectures on 14 March 2006. __________ Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 5, pp. 20–25, September–October, 2006.  相似文献   

17.
Arsenic accumulation in irrigated agricultural soils in Northern Greece   总被引:1,自引:0,他引:1  
The accumulation of arsenic in soils and food crops due to the use of arsenic contaminated groundwater for irrigation has created worldwide concern. In the Chalkidiki prefecture in Northern Greece, groundwater As reach levels above 1000 μg/L within the Nea Triglia geothermal area. While this groundwater is no longer used for drinking, it represents the sole source for irrigation.This paper provides a first assessment of the spatial extent of As accumulation and of As mobility during rainfall and irrigation periods. Arsenic content in sampled soils ranged from 20 to 513 mg/kg inside to 5-66 mg/kg outside the geothermal area. Around irrigation sprinklers, high As concentrations extended horizontally to distances of at least 1.5 m, and to 50 cm in depth. During simulated rain events in soil columns (pH = 5, 0 μg As/L), accumulated As was quite mobile, resulting in porewater As concentrations of 500-1500 μg/L and exposing plant roots to high As(V) concentrations. In experiments with irrigation water (pH = 7.5, 1500 μg As/L), As was strongly retained (50.5-99.5%) by the majority of the soils. Uncontaminated soils (< 30 mg As/kg) kept soil porewater As concentrations to below 50 μg/L. An estimated retardation factor Rf = 434 for weakly contaminated soil (< 100 mg/kg) indicates good ability to reduce As mobility. Highly contaminated soils (> 500 mg/kg) could not retain any of the added As. Invoked mechanisms affecting As mobility in those soils were adsorption on solid phases such as Fe/Mn-phases and As co-precipitation with Ca. Low As accumulation was found in collected olives (0.3-25 μg/kg in flesh and 0.3-5.6 μg/kg in pits). However, soil arsenic concentrations are frequently elevated to far above recommended levels and arsenic uptake in faster growing plants has to be assessed.  相似文献   

18.
The pattern of accumulation of residual shear deformations in the sandy base layers of highways under the action of repeated short-lived loads is examined. The process of deformation accumulation in sands exhibiting a high degree of compaction is dictated by effects that develop in the contacts between sand particles at the moment of load application. Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 5, pp. 2–4, September–October, 2008.  相似文献   

19.
Arsenic is present at high concentrations in the upper layer of Lake Biwa sediments and shows a depth profile similar to that of Mn. Adsorption experiments of As onto synthetic hydrous Mn oxide (HMO) in the presence of Mn2+ and the speciation of Mn in the sediment cores, suggest that the accumulation of As at the sediment surface results from post-depositional migration of arsenite in the sediment pore water followed by oxidation to arsenate at the sediment surface and adsorption onto Mn2+-rich HMO.  相似文献   

20.
Two methods for extraction and determination of benzo[a]pyrene and other PAH in liquid and white soft paraffins, widely used for medicinal and cosmetic purposes, are compared. A method based on extraction by frontal elution chromatography, column and thin-layer chromatography and final spectrophotofluorometric determination gave the best results in the determination of the very low levels (ng/g) of PAH present in these fully refined samples. The complete analytical procedure showed an acceptable percentage of recoveries and good applicability to routine analysis of the PAH content in these petroleum products for the proper evaluation of their potential hazards to human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号