首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Cavitation erosion prediction and characterization of cavitation field strength are of interest to industries suffering from cavitation erosion detrimental effects. One means to evaluate cavitation fields and materials is to examine pitting rates during the incubation period, where the test sample undergoes localized permanent deformations shaped as individual pits. In this study, samples from three metallic materials, an Aluminum alloy (Al 7075), a Nickel Aluminum Bronze (NAB) and a Duplex Stainless Steel (SS A2205) were subjected to a vast range of cavitation intensities generated by cavitating jets at different driving pressures and by an ultrasonic horn. The resulting pitted sample surfaces were examined and characterized with a non-contact 3D optical scanner and the resulting damage computer-analyzed. A statistical analysis of the pit population and its characteristics was then carried out. It was found that the various cavitation field strengths can be correlated to the measured pit distributions and that two characteristic quantities: a characteristic number of pits per unit surface area and unit time, and a characteristic pit diameter or a characteristic pit depth can be attributed to a given “cavitation intensity level”. This characterization concept can be used in the future to study the cavitation intensity of the full scale and to develop methods of full scale predictions based on model scale erosion data.  相似文献   

2.
《Wear》2004,256(1-2):66-72
Cavitation erosion tests of three Fe–Mn–Si–Cr shape memory alloys were carried out at speed 34 and 45 m/s using a rotating disc rig, and their cavitation damage has been investigated by comparison with a referring 13Cr–5Ni–Mo stainless steel used for hydraulic turbine vanes. The research results proved that the cavitation erosion of the Fe–Mn–Si–Cr shape memory alloys is a failure of low cycle fatigue and fracture propagates along grain boundaries. After 48 h cavitation erosion the cumulative mass losses of the studied alloys at speed 45 m/s are more than theirs at speed 34 m/s; however, the effect of velocity on cavitation damage of the Fe–Mn–Si–Cr alloys is much lower than that of 13Cr–5Ni–Mo stainless steel. The cumulative mass loss of the 13Cr–5Ni–Mo stainless steel are 26.3 mg at speed 45 m/s and 3.2 mg at speed 34 m/s, and the mass losses of the Fe–Mn–Si–Cr alloys are within the range of 3.6–7.3 mg at speed 45 m/s and 2.0–4.1 mg at speed 34 m/s. The surface elasticity of the Fe–Mn–Si–Cr shape memory alloys is better than that of the 13Cr–5Ni–Mo stainless steel, and the effect of surface elasticity on cavitation damage increases with velocity. The excellent surface elasticity of the cavitation-induced hexagonal closed-packed (h.c.p.) martensite plays a key role in contribution of phase transformation to the cavitation erosion resistance of the Fe–Mn–Si–Cr shape memory alloys. The cavitation damage of the studied alloys at speed 45 m/s mainly depends on their surface elasticity, and the variation of 48 h cumulative mass loss (Δm) as a function of the elastic depth (he) can be expressed as Δm=2.695+[1371.94/(4(he−46.83)2+12.751)] with a correlation factor of 0.99345.  相似文献   

3.
Abrasive slurry jet micro-machining (ASJM) was used to machine channels in glass, PMMA, zirconium tin titanate, and aluminum nitride. The channel roughness was measured as a function of the ASJM process parameters particle size, dose, impact velocity, and impact angle. The steady-state roughness of the channels was reached relatively quickly for typical ASJM abrasive flow rates. The roughness of channels having depth-to-width aspect ratios up to about 0.25 could be reduced by approximately 35% compared to the roughest channel by decreasing particle impact velocity and angle. However, machining at such conditions reduced the specific erosion rate by 64% on average. It was therefore quicker to post-blast reference channels (225 nm average root mean square (Rrms) roughness) using process parameters selected for peak removal. It was also found that the roughness of reference channels could be reduced by about 78% by post-blasting using 3 μm diameter silicon carbide particles at 15° jet incidence. The smoothest post-blasted channels had an Rrms roughness of about 23 nm in glass, PMMA, and zirconium tin titanate, and 170 nm in aluminum nitride. Computational fluid dynamics was used to predict the particle impact conditions that were used in a model to predict the steady-state roughness due to ductile erosion with an average error of 12%.  相似文献   

4.
Shuji Hattori  Ryohei Ishikura 《Wear》2010,268(1-2):109-116
Cavitation erosion data have been accumulated in our laboratory for about 32 years since 1970. The database was constructed as electronic data in MS Excel files. The data files are able to offer quick search in terms of the test material, test method and test conditions from among 859 data. In this study, 131 data since 2003 were newly added to the database constructed in our previous study. The stainless steel data were analyzed, including various stainless steels such as ferritic, austenitic, duplex and martensitic stainless steels. Vibratory cavitation test results for different stainless steels, obtained with varying test conditions of frequency, amplitude and attachment of specimen, were converted analytically to obtain average erosion rates under assumed standardized conditions of a stationary specimen test with 1 mm standoff distance, and with frequency and amplitude as specified by ASTM G32. The average of erosion rate under the standardized condition (ASTM G32, stationary specimen method, standoff distance 1 mm) was determined for different stainless steels. The erosion resistance was defined as a reciprocal of erosion rate, and the correlation between erosion resistance and hardness of the specimen after erosion test was better than with the other mechanical properties. The erosion resistance is equal to 2.6E?07 × (HV × Fmat)2.4 (HV; Vickers hardness, Fmat; material factor), and the correlation coefficient is 0.98. It was concluded that the erosion resistance of different stainless steels could be estimated with high reliability from the material hardness and the material factor.  相似文献   

5.
This paper describes the design and validation of an upgraded grinding wheel scanner system that controls the position of a Nanovea CHR-150 Axial Chromatism sensor along the x- and y-directions of the wheel surface to measure and characterize wheel surface topography. The scanner features a novel homing system that enables the wheel to be removed from the scanner, used on a grinding machine and then re-mounted and re-homed so that the same location on the wheel surface can be repeatedly measured and monitored. The average standard deviation for homing was 27.6 μm and 19.3 μm in the x- and y-directions, respectively, which is more than adequate for typical area scans of 25 mm2. After homing, the scanner was able to repeatedly measure features that were similar in size to an abrasive grain (∼200 μm diameter) with an average error of 9.3 μm and 5.9 μm in the x- and y-directions, respectively. The resulting topography measurements were compared with Scanning Electron Microscope images to demonstrate the accuracy of the scanner. A custom particle filter was developed to process the resulting data and a novel analysis technique involving the rate of change of measured area was proposed as a method for establishing the reference wheel surface from which desired wheel topography results can be reported such as the number of cutting edges, cutting edge width and cutting edge area as a function of radial depth.  相似文献   

6.
This study involves modelling of experimental data of surface roughness of Co28Cr6Mo medical alloy machined on a CNC lathe based on cutting parameters (spindle rotational speed, feed rate, depth of cut and tool tip radius). In order to determine critical states of the cutting parameters variance analysis (ANOVA) was applied while optimisation of the parameters affecting the surface roughness was achieved with the Response Surface Methodology (RSM) that is based on the Taguchi orthogonal test design. The validity of the developed models necessary for estimation of the surface roughness values (Ra, Rz), was approximately 92%. It was found that for Ra 38% of the most effective parameters is on the tool tip radius, followed by 33% on the feed rate whereas for Rz tool tip radius occupied 43% with the feed being at 33% rate. To achieve the minimum surface roughness, the optimum values obtained for spindle rpm, feed rate, depth of cut and tool tip radius were respectively, 318 rpm, 0.1 mm/rev, 0.7 mm and 0.8 mm.  相似文献   

7.
《Wear》2007,262(5-6):522-528
Cavitation erosion was studied for various pure titanium and titanium alloy samples using a rotating disk method in seawater at 303, 318, and 333 K. Their respective erosion resistances were evaluated in terms of Vickers hardness (HV). The resistance increased in order with increasing hardness: pure titanium samples of first, second, and third types, and titanium alloy (Ti–6Al–4V). The relative temperature was defined as 273 K for freezing temperature and 373 K for boiling temperature under pressurized water. The volume loss rate of test specimens increased with rising seawater temperature of 289–316 K of the relative temperature, as well as in cases using cavitating liquid jet and vibratory apparatuses.  相似文献   

8.
Cutting of a nanoscale workpiece is useful in nano testing and fabrication, and novel cutting methods with little gasification of cut nano samples and simple device structures are needed for practical applications. In this paper, an ultrasonic nanowire cutting strategy is demonstrated, in which the linear and elliptical vibration of the tip of a micro cutting tool and the adhesion force between a substrate and nanowire are employed to cut and fix the nanowire, respectively. With this strategy, cutting of individual silver nanowires with a diameter from 50 nm to 400 nm is implemented, in which the vibration velocity amplitude of the micro cutting tool’s root is from 18 to 220 mm/s, and the working frequency is about 96.9 kHz and 45.2 kHz, respectively. The dependency of the minimum cutting velocity and optimum cutting velocity range’s lower limit on the AgNW diameter is experimentally clarified. Also, the cutting principle is analyzed, which can well explain the incision morphology and cutting characteristics.  相似文献   

9.
The surface roughness of a milled surface is an important response parameter in finishing milling. The quality of injected products, such as cell phones, laptops, digital cameras greatly depends on the finishing of the molds. The Ra parameter is one of the most commonly used criteria to determine the quality of milled steel. In this study, experiments were carried out on work pieces of AISI P20 steel with 20 × 20 × 10 mm. Solid carbide tools with a diameter of 6 mm were used in the experimental tests. The input parameters were the radial depth of cut, feed rate, and contact angle. The contact angle varied using a special device to simulate the several inclinations in a free-form surface. The results showed that the milled surface is a three-dimensional geometry that is influenced by many parameters. The most important input parameter for the surface roughness, however, is the feed rate, and depending on the measuring direction; the feed rate can have a significant influence on the finishing.  相似文献   

10.
《Wear》2004,256(7-8):774-786
The present work reports the effect of carbide volume fraction on erosive wear behaviour of hardfacing cast irons. Five different grades of weld hardfacing cast irons were selected for the present investigation. The solid particle erosion experiments were carried out with blast furnace sinter, silica sand and alumina particles under mild (53–75 μm, 25 m s−1), moderately severe (125–150 μm/100–150 μm, 50 m s−1) and under severe erosion conditions (300–425 μm, 90 m s−1) at impingement angles of 30 and 90°. The variation in erosion rate with carbide volume fraction was observed to be strong function of the erodent particle hardness, impingement angle and the impact velocity. Under mild erosion conditions, erosion rate decreased with increasing carbide volume fraction (CVF), whereas erosion rate increased with CVF under moderately severe erosion condition with alumina particles. With silica sand particles under moderately severe erosion conditions the beneficial effect of large volume fraction of carbides could only be observed at 30°, whereas at normal impact erosion rate increased with increasing CVF. The erosion rate showed power law relationship with ratio of hardness of erodent particle to that of the target material (He/Ht) and expressed as E=c(He/Ht)p.With increasing severity of erosion conditions erosion rate showed stronger dependence on He/Ht as compared to those under mild and moderately severe erosion conditions. The mechanism of materials removal from the carbides involved Hertzian fracture with softer sinter particles, whereas harder alumina particles could plastically indent and cause gross fracture of the carbides.  相似文献   

11.
Micro-rods were machined by electrochemical machining using the electrostatic induction feeding method, with which ultra-short current pulse duration of several tens of ns can easily be obtained. A tungsten plate and stainless steel (SUS304) rod were used as the tool electrode and workpiece, respectively. To improve the machining accuracy, the machining characteristics when the workpiece is fed in the axial and radial directions were investigated using NaCl aqueous solution as the electrolyte. When fed in the axial direction, the machinable length of the micro-rods was found to peak at the optimum feed speed because of the influence of pitting corrosion and collision between electrodes. When the workpiece was fed in the radial direction, the influence of pitting corrosion decreased, however, the micro-rod was shortened with increasing feed distance in the radial direction because of the stray current flowing through the end of the micro-rod. The simulation results of the material removal process agreed qualitatively with experimental results. Next, machining characteristics were compared between the electrolytes, NaCl and NaNO3 aqueous solutions, by feeding the workpiece in the axial direction. It was found that the influence of pitting corrosion was eliminated with the NaNO3 aqueous solution, and there was no machinable length limitation with suitable feed speeds. In addition, the taper angle and gap width were smaller with the NaNO3 aqueous solution, compared with those of the NaCl aqueous solution. Stainless steel micro-rods of 100 μm in diameter with a high aspect ratio of 20 were fabricated with the NaNO3 aqueous solution. According to the preliminary research results, the machinable minimum diameter of the micro-rods was investigated and micro-rods with an average diameter of 9 μm and length of 78 μm were machined successfully.  相似文献   

12.
The critical flow nozzle is widely used to calibrate flowmeters in gas flow measurement. Its use requires the critical flow factor, C*, a parameter dependent upon the thermophysical properties of the gas at the nozzle throat, and the upstream temperature and pressure. This paper presents C* values for four calibration gases (air, argon, nitrogen and methane), calculated from the most recent reference quality equations of state, over a wider range of temperature and pressure than previously available, 200–600 K and up to 20 MPa. In addition, a new empirical equation has been developed to represent the calculated values accurately, thus eliminating the need for complex calculations or interpolations from tables.  相似文献   

13.
Micro-texture at the tool face is a state-of-the-art technique to improve cutting performance. In this paper, five types of micro-texture were fabricated at the flank face to improve the cooling performance under the condition of high pressure jet coolant assistance. By using micro-textures consisted of pin fins, plate fins and pits fabricated 0.3 mm away from the cutting edge, heat transfer from the tool face to coolant was enhanced. The conditions of tool wear, adhesion and chip formation were compared between the micro-textured and non-patterned tools in the longitudinal turning of the nickel-based superalloy Inconel 718. As a result, micro-textured tools always exhibited the reduced flank and crater wear compared with the non-patterned tool, and the rate of tool wear was influenced by the array and height of fin. The energy dispersive spectroscopy analysis of worn flank faces and the electromotive forces obtained from the tool-work thermocouple supported better cooling performances of micro-textured tools. In addition, coolant deposition at flank face evidenced that heat transfer could be promoted by micro-texture near the border of the contact area between the flank wear land and machined surface. Finally, the changes of flow patterns with pit depth are analyzed for pit type tools by computational fluid dynamics. This investigation clearly showed the function of micro-textures for increasing the turbulent kinetic energy and cooling the textured tool face.  相似文献   

14.
This article follows a previous study on friction and wear of 25CrMo4 steel [N. Khanafi-Benghalem, K. Loucif, E. Felder, F. Delamare, Influence de la température sur les mécanismes de frottement et d’usure des aciers X12NiCrMoSi25-20 et 25CrMo4 glissant sur du carbure de tungstène, Matériaux et techniques 93 (2005) 347–362]. The aim of our work is to study in more details the process of plastic deformation and the wear rate of this steel in lubricated sliding against cemented tungsten carbide, process observed in the previous work. The considered parameters are the temperature T (from 20 to 200 °C), the normal force P (from 500 to 1500 N), the steel structure (normalised HV 220 and quenched/tempered HV 480 states) and the sliding velocity v (from 0.05 to 0.3 m/s). We measured the friction coefficient and the sample total volume loss. A displacement sensor follows the volume loss evolution during the test; this follow-up is approximate because of the sample plastic flow which leads to the formation of peripheral burrs. All the tests conditions generate a significant plastic deformation of the sample steel, even in the quenched/tempered state: it produces a marked increase of the surface hardness, the work hardened layer being much finer for the quenched/tempered state (15 μm) than for the normalised state (40 μm at 20 °C). For temperatures T  100 °C in normalised state, the wear follows the Archard's law with an increasing rate with temperature. For T  120 °C, the wear rate decreases during the test, the global volume of wear being a decreasing function of T. For the quenched/tempered state, the wear rate decreases with the increase of the normal force, this decrease is less than 30% of the normalised state value. The material heating during the wear tests is well correlated with the friction dissipated power, but remains small, except in extreme cases (v maximum, great friction at high temperatures). These results suggest the existence of two wear mechanisms: abrasion by sample debris and burrs emission by plastic flow. The abrasion is probably the dominating mechanism for the tests carried out at the lowest temperatures. The plastic flow becomes a significant component at the highest temperatures. Using a contact model, we discuss to what extent the influence of the temperature and the strain rate on the steel hardness and ductility could explain the temperature and the sliding velocity effect on wear. Other phenomena are probably present: the influence of the steel microstructure and the lubricant on the size and/or the number of particles responsible for abrasion.  相似文献   

15.
The characteristics of soot particles and agglomerates of particles extracted from samples of lubricating oil drawn from the sump of a diesel engine have been investigated. The engine was a high pressure common rail, direct injection diesel designed for light duty automotive applications. Soot from the samples was prepared for imaging by sample dilution with heptane, followed by washing in diethyl ether and in some cases, sample centrifugation. The size and shape of agglomerates were defined from measurements of projected length and width allowing for chain contortion. When used, centrifugation is shown to alter the size and shape of agglomerates, increasing the proportion of chain agglomerates and reducing clusters. Without centrifugation, roughly half of the soot in oil exists in long-chain agglomerates with average length of 130 nm and 50 nm in width. Clusters with modest branching account for the remaining 46%. The average aspect ratio (L/W) was of 2.9. The diameter of spherical primary particles that form the agglomerates ranges between 10 and 35 nm grouped in a Gaussian distribution with a mean value of 20.2 nm. All primary particles exhibit an inner core and an outer shell. The inner core is composed by several nuclei of around 4 nm diameter. Inner core is of around 8–15 nm in diameter and outer shell 4–12 nm thick.  相似文献   

16.
The performance of a modified Danfoss 50 mm diameter electromagnetic flowmeter has been investigated when installed downstream from three different pipe diameters—50 mm, 55 mm and 45 mm. The effects of a 3 mm misalignment of the flowmeter, in both the vertical and horizontal planes, with respect to each of the three upstream pipe diameters has also been identified. The largest percentage errors are reported for the 45 mm upstream diameter pipe, with the flowmeter misaligned by 3 mm in the horizontal plane. The vertical and horizontal mean velocity and root-mean-square velocity profiles, measured within the flowmeter using laser Doppler anemometry, show significant variations in comparison with the ideal, fully developed profiles.  相似文献   

17.
Chen Haosheng  Li Jiang 《Wear》2009,266(7-8):884-887
After a 1 min cavitation experiment performed in an ultrasonic vibration system, needle-like erosion pits appeared on a polished stainless steel surface, and a special ring area was formed around each pit. The shape of the pit and the plastic deformation of the ring area indicate that the mechanical impaction on the surface is the main reason for the cavitation erosion. On the other hand, the iridescent color, the decreased surface hardness and the appearance of the precipitated carbon ring prove that the ring area has experienced a tempering process with the temperature higher than 300 °C. Also, the lack of oxygen in the ring area proves that it is not a chemical oxygen result.  相似文献   

18.
Background and purpose: Dual-energy mammography is a technique which is being used for accuracy enhancement of the breast cancer diagnosis especially in dense breasts. It is also a valuable and practical way for obtaining detailed information about tumor’s size, disease progression and micro-calcification detection which is the earlier sign of breast cancer. The aim of this study was to investigate the possibility of separating different thicknesses of micro-calcifications, Iodine, and Bismuth contrast agents, simultaneously.Material and methods: A breast phantom was made from acrylic and olive oil containing various density thicknesses of Iodine and Bismuth contrast agents. To simulate micro-calcifications, different thicknesses of the Aluminum sheets were used and placed in the phantom as well. In this work, an X-ray tube with Tungsten anode and a flat panel semiconductor detector were used for imaging processes. To customize the X-ray spectrum, a combination of copper and aluminum were used as filters to optimize the X-ray high energy spectrum in dual energy imaging.Results: According to the results, separating of Iodine images was prepared by using of Iodine’s k-edge property for thicknesses greater than 0.5 mg/cm2. Also, Bismuth and Aluminum images with thicknesses greater than 0.53 mg/cm2 and 200 μm, respectively, were isolated automatically by material thicknesses estimation method in dual-energy imaging technique.Conclusion: The results demonstrated that Iodine and Bismuth contrast agents together with micro-calcifications can be separated from breast tissue with good accuracy by using proposed dual-energy contrast enhanced mammography technique.  相似文献   

19.
Cavitation erosion behaviour of niobium was investigated by means of a 20 kHz ultrasonic vibrator at peak-to-peak amplitude of 50 μm, aiming to determine the niobium potential as a material for the manufacturing of hydraulic machine components. The study was emphasized for the three first cavitation stages of the cumulative erosion–time curve. The modification of the niobium surface morphology as a function of the testing time in the incubation, acceleration, and maximum erosion rate stages was verified by SEM analysis. Samples were prepared from 98.9% purity and 90% reduction cold-rolled niobium bar. The study was performed for niobium samples in both the cold-worked and annealed conditions. Samples of CA-6NM martensitic stainless steel, a typical material utilized for hydraulic turbines manufacturing, were also analysed for comparison purpose. Annealing treatment of niobium decreases its hardness and increases its ductility, leading to an increase of the incubation period when compared with the cold-worked niobium. Cavitation erosion failure mechanism in niobium occurs in a sequence of events comprising the work-hardening effect and the fracture of debris allied to the effect of fatigue and microcracks formation. Finally, annealed niobium presents similar incubation period but worse behaviour in the maximum erosion rate stage than CA-6NM steel.  相似文献   

20.
An in-situ acoustic emission (AE) monitoring technique has been implemented in a submerged jet impingement (SIJ) system in an effort to investigate the effect of sand particle impact on the degradation mechanism of X65 carbon steel pipeline material in erosion conditions.A detailed analysis of the acoustic events' count rate enabled the number of impacts per second to be quantified for a range of flow velocities (7, 10, 15 m/s) and solid loadings (0, 50, 200, 500 mg/L) in a nitrogen-saturated solution at 50 °C. The number of impacts obtained from acoustic signals showed a strong agreement with theoretical prediction for flow velocities 7 and 10 m/s. A deviation between practical readings and theory is observed for flow velocity of 15 m/s which may be due to error from detected emissions of multiple rebounded particles.Computational fluid dynamics (CFD) was used in conjunction with particle tracking to model the impingement system and predict the velocity and impact angle distribution on the surface of the sample. Data was used to predict the kinetic energy of the impacts and was correlated with the measured AE energy and material loss from gravimetric analysis. The results demonstrate that AE is a useful technique for quantifying and predicting the erosion damage of X65 pipeline material in an erosion–corrosion environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号