首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Accurate quantification of the amount, quality and sources of urban stormwater runoff are a prerequisite for effective stormwater management. The goal of this study was to estimate city-scale stormwater pollutant export, examine the effect of data sources on export estimates, and develop an optimization method for stormwater monitoring. The results were presented for the city of Lahti in southern Finland, where site mean pollutant concentrations (SMCs), annual pollutant loads, and monitoring guidelines for specific land use types were determined for total suspended solids (TSS), nutrients (total nitrogen TN and total phosphorus TP), chemical oxygen demand (COD), and metals (Pb, Zn, Cu, Cr, and Ni). Depending on the data source, differences between estimated pollutant exports ranged from -89% to 215%. Lack of reference data for every urban land use type and differences in land use classification schemes were identified as key factors limiting the accuracy of pollutant load estimation.  相似文献   

2.
Biofiltration systems use vegetation to improve efficiency of pollutant removal from stormwater, but little is known of how plants vary in their capacity to improve biofilter effectiveness. We used a pot trial of 20 Australian species to investigate how species vary in the removal of pollutants from semisynthetic storm water passing through a soil filter medium. Effluent levels of total suspended solids (TSS), Al, Cr, Cu, Pb and Zn were similarly low for vegetated and non-vegetated soils, with reduction to <1-12% of levels in the stormwater input. N and P effluent concentrations were generally lower from vegetated than non-vegetated soils, but total N increased on average in effluent of both vegetated and non-vegetated soils relative to stormwater input. Effluent concentrations varied 2-4-fold among species for TSS, total N and P, total dissolved N (TDN), organic nitrogen and Cu, to more than 20-fold for NOx, NH4+, Mn, Pb and Fe. Species also varied markedly in pollutant removal per root mass (a means of standardising for plant size), with 18-50-fold variation among species in effluent concentrations of total P and N, TDN and organic N, to >150-fold variation in NOx and NH4+. Hence, choice of plant species may have marked effects on biofilter effectiveness.  相似文献   

3.
Sedimentation devices have been widely implemented to remove suspended solids and attached pollutants from stormwater before entering surface waters. The treatment performance of these best management practices (BMPs) on fine particles is rarely investigated in a standardized way. To overcome this information gap a reliable and standardized testing procedure is formulated.

Four devices have been tested on their suspended sediments removal efficiency at different discharges and particle sizes, using the newly developed standardized full scale test method. The observed removal rates of the facilities with a storage volume in the order of 1.5 m3 and settling surface around 1 m2 drop to low removal efficiencies at flow rates of 10 l/s or more. For small sized sediments (up to 63 μm) the removal efficiency is below 50%. The results of the experiments can be used to improve both the design and the dimensions of stormwater treatment devices.  相似文献   


4.
《Urban Water Journal》2013,10(7):559-569
This study investigated the application of geotextiles as sustainable urban drainage systems for degradation of organic pollutant load present in stormwater. Three experimental granular filter rigs were used, packed with alternating layers made up of gravel, pea gravel, sand and either an upper layer, an upper and lower layer or no layer of geotextile. The hydraulic loading capacity matched that commonly used on conventional sand filters. Standard water quality parameters were measured and collated data was evaluated using an ANOVA and Levine's test of homogeneity of variance procedure. It was found that the rig with both upper and lower geotextiles had a statistically significant difference in data from the rig with only a single geotextile layer. High chemical oxygen demand (58–80%) and suspended solids (88–99.99%) removal rates occurred for all rigs. However, the control rig showed increased outflow concentration of nutrients indicating the potential of geotextiles for stormwater treatment.  相似文献   

5.
This paper describes the development of a pollutant risk prioritisation methodology for the comparative assessment of stormwater pollutants discharged from differing land use types and activities. Guidelines are presented which evaluate available data with respect to ‘likelihood of occurrence’ and ‘severity of impact’. The use of the developed approach is demonstrated through its application to total suspended solids, biochemical oxygen demand, lead and cadmium. The proposed benchmarking scheme represents a transparent and auditable mechanism to support the synthesis of data from a variety of sources and is sufficiently flexible to incorporate the use of chemical, physical and/or ecological data sets. Practitioners involved in developing and implementing pollutant mitigation programmes are assisted in two key ways. Firstly through enabling the risks to receiving waters from diffuse pollution on a source-by-source and/or pollutant-by-pollutant basis at a catchment scale to be comparatively assessed and prioritised. Secondly, the methodology informs the selection of appropriate diffuse pollution control strategies.  相似文献   

6.
《Urban Water Journal》2013,10(6):422-433
Land use modifications associated with urbanization, such as clearance of vegetation, replacement of previously pervious areas with impervious surfaces and drainage channel modifications, result in increased runoff volumes, which often create flooding hazards and increase pollutant transport. An attempt has been made in the present study to investigate stormwater quality from five different urban sub-watersheds (that differ in land use and development activities) in the city of Patiala, India. The five sub-watersheds have similar geological, topographical and climatic conditions and were chosen to minimize the effect of these characteristics on stormwater quality and quantity. Stormwater samples were collected during six storm events between April 2010 and March 2011 and analyzed for BOD5, COD, TSS, TDS, Oil and Grease, TKN, Total P, Coliforms and Heavy Metals (Zn, Cd, Ni, Pb, Fe and Cu). Results of the investigation indicate a strong correlation between land use and development activities and the resulting stormwater quality. TSS, COD and Oil and Grease were found to be major pollutants in surface runoff generated from commercial and urbanized catchments (all exceeded the surface water quality standards developed by Central Pollution Control Board, India). The water quality of the smaller residential catchment was better as compared to other catchments. Principal component analysis was investigated to identify linkages between stormwater quality and urban surface types. It was also confirmed through regression analysis that both antecedent dry period and rainfall intensity have telling influence on stormwater quality. Results obtained can provide practical information for improved stormwater management.  相似文献   

7.
《Urban Water Journal》2013,10(4):313-321
The weighted average concentration (WAC) of total suspended solids (TSS) in stormwater effluent from a continuous deflective separation (CDS) unit in Port Jackson (Australia) catchment was reduced by an average 28% during six high-flow events, but some TSS was released during turbulent, high-flow events. The average removal efficiency of metals Cr, Cu, Pb Mn, Ni, Zn and Fe varied considerably (?49% for Pb and +10% for Mn), whereas Ni and Zn were inefficiently removed by the device. Average concentrations of TKN, NOx and TP were similar at both in- and out-flow points and faecal coliforms counts were slightly reduced.  相似文献   

8.
Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP). The four simulated organic stormwater MP (iodopropynyl butylcarbamate — IPBC, benzene, glyphosate and pyrene) were selected according to their different urban sources and environmental fate. This ensures that the results can be extended to other relevant stormwater pollutants. All three models use substance inherent properties to calculate MP fate but differ in their ability to represent the small physical scale and high temporal variability of stormwater treatment systems. Therefore the three models generate different results. A Global Sensitivity Analysis (GSA) highlighted that settling/resuspension of particulate matter was the most sensitive process for the dynamic model. The uncertainty of the estimated MP fluxes can be reduced by calibrating the dynamic model against total suspended solids data. This reduction in uncertainty was more significant for the substances with strong tendency to sorb, i.e. glyphosate and pyrene and less significant for substances with a smaller tendency to sorb, i.e. IPBC and benzene. The results provide support to the elaboration of MP pollution control strategies by limiting the need for extensive and complex monitoring campaigns targeting the wide range of specific organic MP found in stormwater runoff.  相似文献   

9.
The load of total suspended solids (TSS) is one of the most important parameters for evaluating wet-weather pollution in urban sanitation systems. In fact, pollutants such as heavy metals, polycyclic aromatic hydrocarbons (PAHs), phosphorous and organic compounds are adsorbed onto these particles so that a high TSS load indicates the potential impact on the receiving waters. In this paper, a stochastic model is proposed to estimate the TSS load and its dynamics during rain events. Information on the various simulated processes was extracted from different studies of TSS in urban areas. The model thus predicts the probability of TSS loads arising from combined sewer overflows (CSOs) in combined sewer systems as well as from stormwater in separate sewer systems in addition to the amount of TSS retained in treatment devices in both sewer systems. The results of this TSS model illustrate the potential of the stochastic modeling approach for assessing environmental problems.  相似文献   

10.
Biofiltration is a technology to treat urban stormwater runoff, which conveys pollutants, including heavy metals. However, the variability of metals removal performance in biofiltration systems is as yet unknown. A laboratory study has been conducted with vegetated biofilter mesocosms, partly fitted with a submerged zone at the bottom of the filter combined with a carbon source. The biofilters were dosed with stormwater according to three different dry/wet schemes, to investigate the effect of intermittent wetting and drying conditions on metal removal.Provided that the biofilters received regular stormwater input, metal removal exceeded 95%. The highest metal accumulation occurs in the top layer of the filter media. However, after antecedent drying before a storm event exceeding 3–4 weeks the filters performed significantly worse, although metal removal still remained relatively high. Introducing a submerged zone into the filter improved the performance significantly after extended dry periods. In particular, copper removal in filters equipped with a submerged zone was increased by around 12% (α = 0.05) both during wet and dry periods and for lead the negative effect of drying could completely be eliminated, with consistently low outflow concentrations even after long drying periods.  相似文献   

11.
Selected stormwater priority pollutants: a European perspective   总被引:4,自引:0,他引:4  
The chemical characteristics of stormwater are dependent on the nature of surfaces (roads, roofs etc.) with which it comes into contact during the runoff process as well as natural processes and anthropogenic activities in the catchments. The different types of pollutants may cause problems during utilisation, detention or discharge of stormwater to the environment and may pose specific demands to decentralised treatment. This paper proposes a scientifically justifiable list of selected stormwater priority pollutants (SSPP) to be used, e.g., for evaluation of the chemical risks occurring in different handling strategies. The SSPP-list consists of 25 pollutant parameters including eight of the priority pollutants currently identified in the European Water Framework Directive. It contains general water quality parameters (organic and suspended matter, nutrients and pH); metals (Cd, Cr, Cu, Ni, Pb, Pt and Zn); PAH (naphthalene, pyrene and benzo[a]pyrene); herbicides (pendimethalin, phenmedipham, glyphosate and terbutylazine); and other representative industrially derived compounds (nonylphenol ethoxylates, pentachlorophenol, di(2-ethylhexyl)phthalate, PCB-28 and methyl tert-butyl ether). Tools for flux modelling, enabling calculation of predicted environmental concentrations (PECs), and for ranking the susceptibility of a pollutant to removal within a range of structural stormwater treatment systems or best management practices (BMPs) have been developed, but further work is required to allow all SSPPs to be addressed in the development of future stormwater pollution control measures. In addition, the identified SSPPs should be considered for inclusion in stormwater related monitoring campaigns.  相似文献   

12.
《Water research》1986,20(5):651-659
Characterization and treatability studies were conducted on stormwater residuals obtained from a field-assembled sedimentation basin in Racine, Wisconsin; from swirl and helical bend separators in Boston, Massachusetts; and from an in-line upsized storm conduit in Lansing, Michigan. The residuals were analyzed for the traditional parameters, namely solids, BOD5, COD, TOC, nutrients, as well as 9 metals, 8 pesticides and PCB. The characteristics varied considerably for different storm events and from site to site, and were also found to be considerably different in some areas to those of typical municipal residues or sludge. Bench scale treatability studies including gravity thickening, centrifugation, lime stabilization, buchner funnel filtration and capillary suction time demonstrated that all the sludges can be concentrated and dewatered readily by physical methods.  相似文献   

13.
This study examined pollutant loads released to receiving water from a typical urban watershed in the Los Angeles (LA) Basin of California by applying a best management practice (BMP) performance model that includes uncertainty. This BMP performance model uses the k-C* model and incorporates uncertainty analysis and the first-order second-moment (FOSM) method to assess the effectiveness of BMPs for removing stormwater pollutants. Uncertainties were considered for the influent event mean concentration (EMC) and the aerial removal rate constant of the k-C* model. The storage treatment overflow and runoff model (STORM) was used to simulate the flow volume from watershed, the bypass flow volume and the flow volume that passes through the BMP. Detention basins and total suspended solids (TSS) were chosen as representatives of stormwater BMP and pollutant, respectively. This paper applies load frequency curves (LFCs), which replace the exceedance percentage with an exceedance frequency as an alternative to load duration curves (LDCs), to evaluate the effectiveness of BMPs. An evaluation method based on uncertainty analysis is suggested because it applies a water quality standard exceedance based on frequency and magnitude. As a result, the incorporation of uncertainty in the estimates of pollutant loads can assist stormwater managers in determining the degree of total daily maximum load (TMDL) compliance that could be expected from a given BMP in a watershed.  相似文献   

14.
Most treatment practices for urban runoff capture pollutants such as phosphorus by either settling or filtration while dissolved phosphorus, typically as phosphates, is untreated. Dissolved phosphorus, however, represents an average 45% of total phosphorus in stormwater runoff and can be more than 95%. In this study, a new stormwater treatment technology to capture phosphate, called the Minnesota Filter, is introduced. The filter comprises iron filings mixed with sand and is tested for phosphate removal from synthetic stormwater. Results indicate that sand mixed with 5% iron filings captures an average of 88% phosphate for at least 200 m of treated depth, which is significantly greater than a sand filter without iron filings. Neither incorporation of iron filings into a sand filter nor capture of phosphates onto iron filings in column experiments had a significant effect on the hydraulic conductivity of the filter at mixtures of 5% or less iron by weight. Field applications with up to 10.7% iron were operated over 1 year without detrimental effects upon hydraulic conductivity. A model is applied and fit to column studies to predict the field performance of iron-enhanced sand filters. The model predictions are verified through the predicted performance of the filters in removing phosphates in field applications. Practical applications of the technology, both existing and proposed, are presented so stormwater managers can begin implementation.  相似文献   

15.
《Urban Water Journal》2013,10(2):55-67
Investigations of the pollutant trapping capability of a grassed swale receiving runoff from a road with a traffic intensity of 8,000 vehicles/day were carried out in central Luleå, Sweden. Transport and retention of suspended solids, particles and heavy metals (copper, lead and zinc) were analysed. The sampling was carried out during seven rain events. The results show that once pollutants are trapped in a grassed swale they are not permanently bound to vegetation or soil. A roadside grassed swale may be regarded as a stormwater treatment facility that attenuates the peaks in pollutant loads, without being capable of producing consistently high removal rates.  相似文献   

16.
Horan NJ  Lowe M 《Water research》2007,41(1):253-259
Pilot-scale trials at a domestic wastewater treatment works compared the performance of three grades of recycled glass (coarse, medium and fine) when used as tertiary filter media for total suspended solids removal (TSS). Fine glass produced the best effluent quality but blinded rapidly and coarse glass could process three times the flow but with a reduction in final effluent quality. The medium glass offered a compromise with similar flow characteristics to the coarse glass, yet still achieve good solids removal, albeit less than the fine glass. Full-scale studies compared the performance of medium glass with the sand medium that is typically used in this application. There was little difference between them in terms of TSS removal, and they both removed around 75% of TSS from the influent, provided that the solids concentration did not exceed 70mg/l. However, the glass media had superior flow characteristics and was able to treat an additional 8-10% of the influent following the backwash cycle. Over the study period, the influent to the filters had an average TSS concentration of 38mg/l and produced an effluent with an average of 15mg TSS/l. In order to design for an average TSS concentration of 20mg/l, the maximum solids loading on the medium should not exceed 0.25kg solids/m(3)/h. Selecting recycled glass as a tertiary filter medium will give a 10% reduction in the amount of media required, compared to sand. It also carries with it the benefits of using a recycled material, and although these are more difficult to quantify they include: reduced CO(2) emissions and use of a more sustainable product that promotes favourable publicity and positive environmental reporting.  相似文献   

17.
This paper present the results of an experimental investigation on removing colloidal particles from stormwater runoff by microcarrier process. The mechanisms of the microcarrier process involve particle capturing, suspension and sedimentation. The results indicated that this process is effective in treating stormwater runoff. The removal rate for particle count, turbidity, suspended solids and volatile solids reach 96% and higher. The total treatment include a 30‐second mixing with a 3‐minute settling, a substantial time reduction from that of the conventional approach. This rapid treatment indicates that the microcarrier process has the capacity to treat large volumes of surface runoff during a storm event.  相似文献   

18.
The paper presents a novel methodology (RICH, Ranking and Identification of Chemical Hazards) for ranking and identification of xenobiotic organic compounds of environmental concern in stormwater discharged to surface water. The RICH method is illustrated as a funnel fitted with different filters that sort out problematic and hazardous compounds based on inherent physico-chemical and biological properties. The outcomes of the RICH procedure are separate lists for both water phase and solid phase associated compounds. These lists comprise: a justified list of compounds which can be disregarded in hazard/risk assessments, a justified list of stormwater priority pollutants which must be included in hazard/risk assessments, and a list of compounds which may be present in discharged stormwater, but cannot be evaluated due to lack of data. The procedure was applied to 233 xenobiotic organic chemicals (XOCs) of relevance for stormwater. Of these 233 compounds, 121 compounds were found to be priority pollutants with regard to solids phases (i.e. suspended solids, soil, or sediments) when stormwater is discharged to surface water and 56 compounds were found to be priority pollutants with regard to the water phase. For 11% of the potential stormwater priority pollutants the screening procedure could not be carried out due to lack of data on basic physico-chemical properties and/or data on bioaccumulation, resistance to biodegradation, and ecotoxicity. The tiered approach applied in the RICH procedure and the focus on the phases relevant for monitoring or risk assessment in the aquatic environment refines the list of "compounds of concern" when compared to the outcome of existing classification schemes. In this paper the RICH procedure is focused on effects in the aquatic environment exemplified with xenobiotic organic compounds (XOCs) found in urban stormwater, but it may be transferred to other environmental compartments and problems. Thus, the RICH procedure can be used as a stand-alone tool for selection of potential priority pollutants or it can be integrated in larger priority setting frameworks.  相似文献   

19.
This paper presents the outcomes of a research project, which focused on developing a set of surrogate parameters to evaluate urban stormwater quality using simulated rainfall. Use of surrogate parameters has the potential to enhance the rapid generation of urban stormwater quality data based on on-site measurements and thereby reduce resource intensive laboratory analysis. The samples collected from rainfall simulations were tested for a range of physico-chemical parameters which are key indicators of nutrients, solids and organic matter. The analysis revealed that [total dissolved solids (TDS) and dissolved organic carbon (DOC)]; [total solids (TS) and total organic carbon (TOC)]; [turbidity (TTU)]; [electrical conductivity (EC)]; [TTU and EC] as appropriate surrogate parameters for dissolved total nitrogen (DTN), total phosphorus (TP), total suspended solids (TSS), TDS and TS respectively. Relationships obtained for DTN-TDS, DTN-DOC, and TP-TS demonstrated good portability potential. The portability of the relationship developed for TP and TOC was found to be unsatisfactory. The relationship developed for TDS-EC and TS-EC also demonstrated poor portability.  相似文献   

20.
A well-designed engineered soil for bioretention is important as it ensures that pollutant removal requirements are met. This laboratory study investigated the nutrient removal efficiency of bioretention media enhanced with 10% (by volume) additives from various waste materials (cockle shell, newspaper, printed paper, coconut husk and tyre crumb) and planted with Red Hot Chinese Hibiscus (Hibiscus rosa-sinensis), a common landscape shrub in tropical countries. The results showed that media enhanced with shredded newspaper demonstrated a significant improvement in total nitrogen (TN) removal (80.4%), compared to standard bioretention media (57.5%) without compromising total suspended solids (TSS) and total phosphorus (TP) removal, when dosed with actual runoff. The thick root system and rapid growth rate of the plant was proven to contribute to TN removal. This study concluded that shredded newspaper can be a potential addition to enhance bioretention media performance in treating stormwater, especially nutrient rich runoff from mixed development areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号