首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 58 毫秒
1.
目的 探讨肝细胞生长因子(Hepatocyte growth factor,HGF)和碱性成纤维细胞生长因子(Basic fibroblast growthfactor,bFGF)诱导大鼠骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BM-MSCs)分化为肝样细胞的可行性。方法取SD大鼠股骨骨髓,直接贴壁法分离纯化BM-MSCs,并体外传代,流式细胞术和成骨诱导对其进行鉴定。取第3代BM-MSCs,分为2组:实验组用HGF(20 ng/ml)和bFGF(10 ng/ml)进行诱导,阴性对照组不加诱导剂,倒置显微镜下观察细胞形态变化;RT-PCR法检测诱导后细胞甲胎蛋白(Alpha fetoprotein,AFP)和白蛋白(Albumin,ALB)基因mRNA的转录水平;免疫细胞化学染色法检测诱导后细胞的AFP和ALB蛋白的表达。结果第3代BM-MSCs表型标志和功能特性均符合MSCs的特点。BM-MSCs经HGF和bFGF诱导后呈肝样细胞形态。实验组细胞可检测出AFP和ALB基因mRNA的表达。实验组细胞诱导后第7天,AFP蛋白开始表达,第14天时表达降低,第21天时不表达;ALB于诱导后第14天出现表达,并随诱导时间的延长表达逐渐增加。结论 HGF和bFGF具有体外诱导BM-MSCs向肝样细胞分化的作用。  相似文献   

2.
目的研究白藜芦醇体外诱导大鼠骨髓基质细胞(Marrow stroma cells,MSCs)向神经元样细胞的分化。方法采用全骨髓贴壁法分离培养MSCs,取第3代MSCs分为白藜芦醇诱导组、对照组和正常组,白藜芦醇诱导组先加入预诱导液(含10μg/L bFGF的DMEM/F12培养基)培养24 h,再更换诱导液(含15μmol/L白藜芦醇的DMEM/F12培养基)诱导6 h,然后更换维持液(含15μmol/L白藜芦醇,10μg/L bFGF,2%B27的DMEM/F12培养基),继续培养至72 h;对照组预诱导与白藜芦醇诱导组相同,诱导时仅加入DMEM/F12培养基诱导6 h,再更换维持液(含10μg/L bFGF,2%B27的DMEM/F12培养基),继续培养至72 h,倒置显微镜下观察诱导分化后MSCs形态;各组分别于诱导前及诱导后2、6、24、72 h采用间接免疫荧光法、Western blot法和RT-PCR法检测nestin、NSE蛋白及mRNA表达。结果白藜芦醇诱导后细胞胞体收缩,伸出长突起,类似神经元,间接免疫荧光染色显示诱导后细胞nestin和NSE阳性,对照组未见阳性细胞。白藜芦醇诱导组nestin、NSE蛋白及mRNA表达较对照组明显升高,诱导后2 h,nestin蛋白及mRNA表达达最高(P<0.01),之后逐渐下降;而NSE蛋白及mRNA表达逐渐升高,诱导后72 h达最高(P<0.01),对照组则无明显变化。结论白藜芦醇在体外可诱导大鼠骨髓基质细胞分化为神经元样细胞,为白藜芦醇在干细胞移植领域的应用提供了实验依据。  相似文献   

3.
目的探讨兔骨髓基质干细胞(MSC)体外分离培养及鉴定。方法自兔髂骨抽取骨髓,采用密度梯度离心法分离纯化出MSC,并增殖。观察MSC的生长情况及形态学特点,流式细胞仪检测第3代MSC表面抗原的表达情况。结果体外培养的兔MSC贴壁生长,呈长梭形,可增殖形成克隆;MSC阳性表达CD29,CD90,但CD34,CD45呈阴性。结论利用密度梯度离心法获取的MSC具有大量增殖的能力,表达CD29,CD90,不表达CD34,CD45。  相似文献   

4.
目的探讨移植的骨髓基质干细胞诱导分化的滑膜样细胞是否具有明显的防止屈肌腱粘连的功效。方法提取兔骨髓基质干细胞诱导下分化为滑膜样细胞。经鉴定后,将滑膜样细胞移植于大白兔损伤的跟腱处,术后l、2、4、8周取材,进行大体标本粘连等级评定、生物力学测试及组织学观察。结果对分化的滑膜样细胞鉴定,光镜下、电镜下均符合滑膜细胞结构特征,免疫组化Vimentin阳性,CD68阴性,符合成纤维细胞样滑膜细胞(B型滑膜细胞)的特征。滑膜样细胞移植术后,光镜及扫描电镜发现肌腱表面光滑,被覆大量滑膜样细胞。同一时相点实验组同对照组相比粘连明显减轻(P<0.05)。结论骨髓基质干细胞在一定条件下可以诱导分化为滑膜样细胞。滑膜样细胞移植可以有效的防止肌腱粘连。  相似文献   

5.
目的研究乙型肝炎病毒(hepatitis B virus,HBV)X蛋白(HBx)对小鼠胚胎肝干细胞(embryonic liver stemcell,ELSC)凋亡及相关蛋白Bcl2、Mcl1、Bax表达的影响。方法采用表达绿色荧光蛋白(green fluorescent protein,GFP)的腺病毒载体系统将HBx基因转入小鼠胚胎肝干细胞ELSC14.5中,采用RT-PCR和Western blot法检测细胞中HBx基因mRNA的转录和蛋白的表达;Hoechst33342染色法观察细胞核的改变;TUNEL法和流式细胞术检测细胞的凋亡情况;Real-time PCR和Western blot法检测抗凋亡因子Bcl2、Mcl1和促凋亡因子Bax基因mRNA的转录水平和蛋白的表达水平。结果重组腺病毒Ad-GFP-HBx能有效感染ELSC14.5细胞,HBx基因和蛋白均能特异性表达;感染的ELSC14.5细胞核呈现固缩,且边缘化的细胞数减少,细胞凋亡率降低;细胞中Bcl2和Mcl1基因mRNA的转录水平和蛋白的表达水平均增高,而Bax的表达降低。结论 HBx可通过调节Bcl2家族中抗凋亡因子和促凋亡因子的比例失衡,来抑制小鼠胚胎肝干细胞的凋亡,促进其存活。  相似文献   

6.
目的建立大鼠骨髓间充质干细胞(Mesenchymal stem cells,MSCs)体外分离培养及鉴定的方法 ,为MSCs的系列研究奠定基础。方法采用全骨髓直接贴壁筛选法分离培养MSCs并传代,倒置相差显微镜下观察细胞形态,以MTT法检测细胞增殖水平并绘制生长曲线。取第3代MSCs,流式细胞术检测细胞周期和细胞表型,应用成骨细胞诱导液和脂肪样细胞诱导液诱导MSCs定向分化,鉴定其分化能力。结果全骨髓细胞培养5d,镜下可见贴壁细胞增殖明显,细胞形态较均一,大部分呈梭形,7d左右可传代,经2~3次传代后细胞呈单一梭形的成纤维样细胞,即MSCs;细胞生长曲线呈S形;经流式细胞仪检测,MSCs细胞76.01%处于G0/G1期,7.13%处于G2/M期,16.86%处于S期;MSCs表面不表达CD34;在特定诱导液作用下,MSCs可分别向成骨样细胞及脂肪样细胞分化。结论已成功建立了分离培养及鉴定MSCs的方法 ,可用来评价体外培养的MSCs。  相似文献   

7.
刘小冬 《广东化工》2013,(9):221-222
氧化过程是机体的一种防御机制,其目的在于维持内环境的稳态。但过量的活性氧簇(reactive oxygen species,ROS)却会诱发一些疾病的产生。在肝脏纤维化中,ROS在肝细胞坏死、肝星状细胞增殖过程中同样起着重要的作用。研究发现,ROS在不同肝纤维化发病过程中参与整个肝纤维化的发病过程,且作用不同。ROS这些新的研究成果将有助于揭示肝纤维的形成机理和开发新型抗肝纤维化药物的研究。文章列举出最年来在肝纤维化过程中对ROS系统的研究,来说明ROS在肝纤维化中的重要作用,及通过ROS系统可以治疗肝纤维化。  相似文献   

8.
9.
目的 观察在成软骨诱导培养条件下,细胞传代对骨髓间充质干细胞(MSCs)体外成软骨能力的影响.方法 不同代MSCs成软骨诱导后,观察细胞生物学特性以及通过免疫荧光,RT-PCR测定特异性软骨细胞外基质aggrecan的表达情况.结果 经成软骨诱导后,第2、4代MSCs表达aggrecan明显较第6、8代细胞高.结论 MSCs很可能由多种形态功能接近,分化潜能有略有差异的细胞组成;在成软骨诱导培养条件下,对此传代后成软骨能力减弱.  相似文献   

10.
目的探讨乳鼠视网膜细胞条件分化液诱导骨髓间充质干细胞(BMSCs)的神经分化情况,以期为视网膜退行性疾病提供治疗方案。方法体外分离培养Wistar大鼠乳鼠BMSCs,观察BMSCs的增殖情况并进行鉴定;制备乳鼠视网膜细胞条件分化液,以其诱导BMSCs,观察BMSCs的神经分化情况,并行免疫组化鉴定。结果体外培养获得了较纯的BMSCs;在乳鼠视网膜细胞条件分化液的环境中,诱导后72h,BMSCs胞体收缩成锥形或球形,细胞突起变细、变长,呈神经细胞的典型形态;免疫组化结果显示,部分细胞呈神经元特异性烯醇化酶(NSE)、巢蛋白(nestin)和Thy1.1阳性反应。结论乳鼠视网膜细胞条件分化液可诱导BMSCs分化成视网膜神经节样细胞。  相似文献   

11.
Graft cell repopulation and tendon-bone tunnel healing are important after allograft anterior cruciate ligament reconstruction (ACLR). Freshly isolated bone marrow mononuclear cells (BMMNCs) have the advantage of short isolation time during surgery and may enhance tissue regeneration. Thus, we hypothesized that the effect of intra-articular BMMNCs in post-allograft ACLR treatment is comparable to that of cultured bone marrow stromal cells (BMSCs). A rabbit model of hamstring allograft ACLR was used in this study. Animals were randomly assigned to the BMMNC, BMSC, and control groups. Fresh BMMNCs isolated from the iliac crest during surgery and cultured BMSCs at passage four were used in this study. A total of 1 × 107 BMMNCs or BMSCs in 100 µL phosphate-buffered saline were injected into the knee joint immediately after ACLR. The control group was not injected with cells. At two and six weeks post operation, we assessed graft cell repopulation with histological and cell tracking staining (PKH26), and tendon-bone healing with histological micro-computed tomography and immunohistochemical analyses for collagen I and monocyte chemoattractant protein-1 (MCP1). At two weeks post operation, there was no significant difference in the total cell population within the allograft among the three groups. However, the control group showed significantly higher cell population within the allograft than that of BM cell groups at six weeks. Histological examination of proximal tibia revealed that the intra-articular delivered cells infiltrated into the tendon-bone interface. Compared to the control group, the BM cell groups showed broader gaps with interfacial fibrocartilage healing, similar collagen I level, and higher MCP1 expression in the early stage. Micro-CT did not reveal any significant difference among the three groups. BMMNCs and BMSCs had comparable effects on cell repopulation and interfacial allograft-bone healing. Intra-articular BM cells delivery had limited benefits on graft cell repopulation and caused higher inflammation than that in the control group in the early stage, with fibrocartilage formation in the tendon-bone interface after allograft ACLR.  相似文献   

12.
Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the aim of this study was to evaluate the angiogenic properties of menstrual blood-derived mesenchymal stromal cells (mbMSC) in vitro and in vivo and compared to bmMSC. MSC’s intrinsic angiogenic capacity was assessed by sprouting and migration assays. mbMSC presented higher invasion and longer sprouts in 3D culture. Additionally, both MSC-spheroids showed cells expressing CD31. mbMSC and bmMSC were able to migrate after scratch wound in vitro, nonetheless, only mbMSC demonstrated ability to engraft in the chick embryo, migrating to perivascular, perineural, and chondrogenic regions. In order to study the paracrine effects, mbMSC and bmMSC conditioned mediums were capable of stimulating HUVEC’s tube-like formation and migration. Both cells expressed VEGF-A and FGF2. Meanwhile, PDGF-B was expressed exclusively in mbMSC. Our results indicated that mbMSC and bmMSC presented a promising angiogenic potential. However, mbMSC seems to have additional advantages since it can be obtained by non-invasive procedure and expresses PDGF-B, an important molecule for vascular formation and remodeling.  相似文献   

13.
Extracellular vesicles (EVs) released by bone marrow stromal cells (BMSCs) have been shown to act as a transporter of bioactive molecules such as RNAs and proteins in the therapeutic actions of BMSCs in various diseases. Although EV therapy holds great promise to be a safer cell-free therapy overcoming issues related to cell therapy, manufacturing processes that offer scalable and reproducible EV production have not been established. Robust and scalable BMSC manufacturing methods have been shown to enhance EV production; however, the effects on EV quality remain less studied. Here, using human BMSCs isolated from nine healthy donors, we examined the effects of high-performance culture media that can rapidly expand BMSCs on EV production and quality in comparison with the conventional culture medium. We found significantly increased EV production from BMSCs cultured in the high-performance media without altering their multipotency and immunophenotypes. RNA sequencing revealed that RNA contents in EVs from high-performance media were significantly reduced with altered profiles of microRNA enriched in those related to cellular growth and proliferation in the pathway analysis. Given that pre-clinical studies at the laboratory scale often use the conventional medium, these findings could account for the discrepancy in outcomes between pre-clinical and clinical studies. Therefore, this study highlights the importance of selecting proper culture conditions for scalable and reproducible EV manufacturing.  相似文献   

14.
The heterogeneity of stem cells represents the main challenge in regenerative medicine development. This issue is particularly pronounced when it comes to the use of primary mesenchymal stem/stromal cells (MSCs) due to a lack of identification markers. Considering the need for additional approaches in MSCs characterization, we applied Raman spectroscopy to investigate inter-individual differences between bone marrow MSCs (BM-MSCs). Based on standard biological tests, BM-MSCs of analyzed donors fulfill all conditions for their characterization, while no donor-related specifics were observed in terms of BM-MSCs morphology, phenotype, multilineage differentiation potential, colony-forming capacity, expression of pluripotency-associated markers or proliferative capacity. However, examination of BM-MSCs at a single-cell level by Raman spectroscopy revealed that despite similar biochemical background, fine differences in the Raman spectra of BM-MSCs of each donor can be detected. After extensive principal component analysis (PCA) of Raman spectra, our study revealed the possibility of this method to diversify BM-MSCs populations, whereby the grouping of cell populations was most prominent when cell populations were analyzed in pairs. These results indicate that Raman spectroscopy, as a label-free assay, could have a huge potential in understanding stem cell heterogeneity and sorting cell populations with a similar biochemical background that can be significant for the development of personalized therapy approaches.  相似文献   

15.
Two different types of adipose depots can be observed in mammals: white adipose tissue (WAT) and brown adipose tissue (BAT). The primary role of WAT is to deposit surplus energy in the form of triglycerides, along with many metabolic and hormonal activities; as thermogenic tissue, BAT has the distinct characteristic of using energy and glucose consumption as a strategy to maintain the core body temperature. Under specific stimuli—such as exercise, cold exposure, and drug treatment—white adipocytes can utilize their extraordinary flexibility to transdifferentiate into brown-like cells, called beige adipocytes, thereby acquiring new morphological and physiological characteristics. For this reason, the process is identified as the ‘browning of WAT’. We evaluated the ability of some drugs, including GW501516, sildenafil, and rosiglitazone, to induce the browning process of adult white adipocytes obtained from differentiated mesenchymal stromal cells (MSCs). In addition, we broadened our investigation by evaluating the potential browning capacity of IRISIN, a myokine that is stimulated by muscular exercises. Our data indicate that IRISIN was effective in promoting the browning of white adipocytes, which acquire increased expression of UCP1, increased mitochondrial mass, and modification in metabolism, as suggested by an increase of mitochondrial oxygen consumption, primarily in presence of glucose as a nutrient. These promising browning agents represent an appealing focus in the therapeutic approaches to counteracting metabolic diseases and their associated obesity.  相似文献   

16.
Mesenchymal stromal cells derived from the fetal placenta, composed of an amnion membrane, chorion membrane, and umbilical cord, have emerged as promising sources for regenerative medicine. Here, we used next-generation sequencing technology to comprehensively compare amniotic stromal cells (ASCs) with chorionic stromal cells (CSCs) at the molecular and signaling levels. Principal component analysis showed a clear dichotomy of gene expression profiles between ASCs and CSCs. Unsupervised hierarchical clustering confirmed that the biological repeats of ASCs and CSCs were able to respectively group together. Supervised analysis identified differentially expressed genes, such as LMO3, HOXA11, and HOXA13, and differentially expressed isoforms, such as CXCL6 and HGF. Gene Ontology (GO) analysis showed that the GO terms of the extracellular matrix, angiogenesis, and cell adhesion were significantly enriched in CSCs. We further explored the factors associated with inflammation and angiogenesis using a multiplex assay. In comparison with ASCs, CSCs secreted higher levels of angiogenic factors, including angiogenin, VEGFA, HGF, and bFGF. The results of a tube formation assay proved that CSCs exhibited a strong angiogenic function. However, ASCs secreted two-fold more of an anti-inflammatory factor, TSG-6, than CSCs. In conclusion, our study demonstrated the differential gene expression patterns between ASCs and CSCs. CSCs have superior angiogenic potential, whereas ASCs exhibit increased anti-inflammatory properties.  相似文献   

17.
Bone marrow adiposity is a complication in osteoporotic patients. It is a result of the imbalance between adipogenic and osteogenic differentiation of bone marrow cells. Phytochemicals can alleviate osteoporotic complications by hindering bone loss and decreasing bone marrow adiposity. Corydalis heterocarpa is a biennial halophyte with reported bioactivities, and it is a source of different coumarin derivatives. Libanoridin is a coumarin isolated from C. heterocarpa, and the effect of libanoridin on adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) was evaluated in the present study. Cells were induced to undergo adipogenesis, and their intracellular lipid accumulation and expression of adipogenic markers were observed under libanoridin treatment. Results showed that 10 μM libanoridin-treated adipocytes accumulated 44.94% less lipid compared to untreated adipocytes. In addition, mRNA levels of PPARγ, C/EBPα, and SREBP1c were dose-dependently suppressed with libanoridin treatment, whereas only protein levels of PPARγ were decreased in the presence of libanoridin. Fluorescence staining of adipocytes also revealed that cells treated with 10 μM libanoridin expressed less PPARγ compared to untreated adipocytes. Protein levels of perilipin and leptin, markers of mature adipocytes, were also suppressed in adipocytes treated with 10 μM libanoridin. Analysis of MAPK phosphorylation levels showed that treatment with libanoridin inhibited the activation of p38 and JNK MAPKs observed by decreased levels of phosphorylated p38 and JNK protein. It was suggested that libanoridin inhibited adipogenic differentiation of hBM-MSCs via suppressing MAPK-mediated PPARγ signaling. Future studies revealing the anti-adipogenic effects of libanoridin in vivo and elucidating its action mechanism will pave the way for libanoridin to be utilized as a nutraceutical with anti-osteoporotic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号