首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agronomic evaluation of modified phosphate rock products   总被引:1,自引:0,他引:1  
Phosphorus (P) is critically needed to improve the soil fertility for crop production in large areas of developing countries. The high cost of conventional, water-soluble P fertilizers constrains their use by resource-poor farmers. Finely ground phosphate rock (PR) has been tested and used as a direct application fertilizer on tropical acid soils as a low-cost alternative where indigenous deposits of PR are located. However, direct application of PR with low reactivity or with inappropriate soil/crop combinations does not always give satisfactory results. Partial acidulation of PR (PAPR) or compaction with triple superphosphate (PR + TSP) or single superphosphate (PR + SSP) represent technologies that can be used to produce highly effective P fertilizers from those indigenous deposits. Numerous field trials conducted by IFDC in Asia, sub-Saharan Africa, and Latin America have demonstrated that PAPR at 40-50% acidulation with H2SO4 or at 20% with H3PO4 approaches the effectiveness of SSP or TSP in certain tropical soils and crops. This paper discusses how the agronomic effectiveness of PAPR is affected by mineralogical composition and reactivity of PR used and by soil properties and soil reactions. The paper also indicates that if a PR has high Fe2O3 + Al2O3 content, it may not be suitable for PAPR processing because of the reversion of water-soluble P to water-insoluble P during the PAPR manufacturing process. Under these conditions, compaction of PR with water-soluble P fertilizers (e.g. SSP, TSP) at P ratio of approximately 50:50 can be agronomically and economically attractive for utilizing the indigenous PRs in developing countries.  相似文献   

2.
Phosphorus (P) is needed in large areas of developing countries toimprove soil fertility for crop production. The use of phosphate rock (PR) isan alternative to costly soluble P fertilizers, but it is ineffective usuallyin non-acid soils unless it is modified i.e. partially acidulated (PAPR). Alaboratory incubation study using the isotopic exchange kinetic method of32P and field experiments were undertaken on a neutral Ferralsol ofCuba to evaluate the effectiveness of PAPRs as fertilizers for common bean(Phaseolus vulgaris, L.). Sulfuric-acid based PAPR using40%, 50% and 60% of the acid required to produce singlesuperphosphate were studied. In the laboratory experiment Trinidad de GuedesPAPR was effective in providing P to the soil, through increases inisotopicallyexchangeable P and the percentage of P derived from fertilizer (%Pdff). In the three field experiments carried out to compare the P sources,yields of common bean were increased by PAPR, though the response was less thanwith triple superphosphate (TSP). The relative agronomic effectiveness (RAE) ofPAPR was greater than that of unacidulated PR. Taking into account the RAEvalues and the current cost of the P sources, the choice of Trinidad de GuedesPAPR instead of TSP could be economic, although the RAE value for PAPR waslowerthan that of TSP. This result indicates that PAPR could be used in thesoil understudy to obtain the best economic return. DM yield, P uptake and grain yield ofcommon bean were significantly increased by applying P as 50% PAPR. Lowcost improvement of the agronomic value of PR can be achieved by partialacidulation, so this modification of the phosphate rock show promise forutilization of PR reserves indigenous to developing countries.  相似文献   

3.
Because various phosphate (P) fertilizers differ widely in their solubility, it is commonly observed that crop response to P fertilizers varies under the same soil and crop conditions. Furthermore, a major problem encountered in the methods for determining the relative effectiveness (RE) of water-insoluble P fertilizer (e.g., phosphate rock) with respect to water-soluble P fertilizers, e.g., single superphosphate (SSP) and triple superphosphate (TSP), is that their growth response curves are usually nonlinear and often do not share a common maximum yield. In this paper, we review and discuss the advantages and disadvantages of the three most commonly used methods for calculating the RE of phosphate rock with respect to TSP (or SSP). The three methods are vertical comparison, horizontal (substitution rate) comparison, and linear-response comparison.  相似文献   

4.
Phosphate rocks partially acidulated either with H3PO4 or H2SO4 were compared against SSP or TSP as phosphate fertilizers for permanent pasture. Eleven field trials were conducted over periods of up to 6 yrs. Fertilizers were surface applied annually. Initial soil pHw values ranged from 5.5–6.3 and Soil P retention from 25% to 97%. The PRs used for partial acidulation were unground or ground North Carolina PR, ground Khouribga PR, and a blend of ground PRs of North Carolina, Arad and Khouribga PRs. From the DM yields, fertilizer substitution values were calculated: fertilizer substitution value was the ratio of total P applied as superphosphate to total P as PAPR required to produce the same DM yield.Rates of dissolution of the PR component of PAPRs were also determined in soils collected from two trials.Agronomic results demonstrated that 30% acidulated phosphoric PAPRs (about 50% of total P as water-soluble P) were as effective as TSP, when the PR acidulated was from unground North Carolina PR. Results from one field trial indicated that when PAPR was from ground North Carolina PR, 20% acidulated product (water-soluble P 30–40% of total P) was equally effective as TSP. Replacement of ground North Carolina PR by a less reactive Khouribga PR did not appear to decrease the yield. Results indicated that per unit P released into soil solution, PAPRs were more efficient fertilizers than TSP. With annual applications, fertilizer substitution value of PAPR 30% tended to increase with time.Sulphuric PAPRs prepared from North Carolina PR were generally inferior to phosphoric PAPRs containing similar amounts of water-soluble P. This was attributed to the presence of CaSO4 coatings.Abbreviations DM Dry matter - PAPR Partially acidulated phosphate rock - PR Phosphate rock - SSP Single superphosphate - TSP Triple superphosphate  相似文献   

5.
A main constraint to agricultural productivity in the southern regionsof Chile is the low available soil P exacerbated by the high P sorptioncapacityof the predominant Andisols. Therefore, substantial amounts of P fertilizersmust be applied to obtain optimum growth and crop yields. One cost-effectivestrategy followed to supply P to crops grown in these soils is the directapplication of the local Bahia Inglesa PR source. However, a more sustainablestrategy would be to combine the use of the local PR with the crop species andcultivars that are able to grow in these acid soils and can utilize efficientlyPR. Rape is reported to be very efficient in utilising P from PR sources due toits capacity to exude organic acids to the rhizosphere. Therefore, the presentstudy was conducted to evaluate the ability of five rape cultivars grown in anAndisol of southern Chile in utilising P from two PR sources (Bahia Inglesa andBayovar) and triple superphosphate, a water-soluble P fertilizer. It was foundthat rape was able to absorb significant amounts of P from the PR sources andmuch less from the TSP and soil P. Both Bahia Inglesa and Bayovar PRs werefoundto be as effective as TSP for the rape genotypes in the Andisol Pemehue. Theuseof the 32P isotope technique enabled to assess the ability of thegenotypes tested to utilize P from the different P fertilizers applied. Thegenotypes G2 and G3 showed increased P acquisition from the PR than thegenotypeG5. Combined utilization of P efficient genotypes and direct application of theBahia Inglesa PR seems to be a promising technology for attaining sustainableagricultural productivity in the Andisols of Chile. Further field trials forvalidating these findings at the level of cropping systems are needed. Thisagronomic testing should be accompanied by in-depth studies to assess therelative importance of the morphological and physiological traits determining ahigher P efficiency.  相似文献   

6.
Phosphorus deficiency is one of the major constraints for normal plant growth and crop yields in the acid soils of Ghana and therefore addition of P inputs is required for sustainable crop production. This is often difficult, if not impossible for small-scale farmers due to the high cost of mineral P fertilizers and limited access to fertilizer supplies. Direct application of finely ground phosphate rocks (PRs) and their modified forms have been recommended as alternatives for P fertilization. The direct application of the natural and modified PRs to these acid soils implies the need to predict their agronomic effectiveness of the PRs in the simplest and most cost-effective manner. In this study the classical greenhouse pot experiment was compared to the 32P isotopic kinetics laboratory method for evaluating the agronomic effectiveness of natural and modified Togo PR in six highly weathered Oxisols from southwest Ghana. In the 32P isotopic kinetics laboratory experiment the six soil samples were each fertilised at the rate of 50 mg P kg–1 soil in the form of triple superphosphate (TSP), Togo PAPR-50%, and Togo PR, respectively. Controls without P amendment were also included. Isotopic exchange kinetics experiments were carried out on two sets of samples, immediately after P fertilizer additions (without incubation) and after 6 weeks of incubation under wet conditions and at a room temperature of 25 °C. In the greenhouse pot experiment, P fertilizers in the form of Togo PR, Togo PAPR, Mali PR and TSP were each applied to the six soils at rates equivalent to 0, 30, 60, and 120 kg P ha–1, respectively. The P fertilizers were mixed with the soils and maize (Zea mays L.) variety Obatanpa was grown for 42 days before harvest. The isotopic kinetics data of the control samples indicated that 5 of the studied soils had very low P fertility status as reflected by their low P concentrations in solution (CP<0.02 mg P l–1) and low exchangeable P (E1min < 5 mg P kg–1). The capacity factor and the fixation index of the soils were variable. Application of water-soluble P as TSP increased both the CP and E1 values of all the soils above the critical levels. Togo PR was least effective among the fertilizers tested for all soil soils, except in Boi soil. Acidulation of Togo PR (Togo PAPR-50%) was an effective means to increase its agronomic effectiveness. Direct application of natural Togo PR would be only feasible in the Boi soil series as reflected by its high Pdff% value in soil solution. Incubation with the P fertilizers caused an increase in the soil pH and a decline in the effectiveness of the applied P fertilizers, irrespective of the soil and the fertilizer utilized. Based upon the results of the greenhouse pot experiment, the relative crop response index (RCRI) in terms of increasing dry matter yield and P uptake followed the order of TSP > PAPR = Mali PR >Togo PR = Control. Both the laboratory index, Pdff% in soil solution derived from the isotopic method and the RCRI values obtained from the pot experiment produced similar results in ranking the P fertilizers tested according to their agronomic effectiveness. The isotopic kinetic method may be considered as an alternative to both greenhouse and field methods in the evaluation of agronomic effectiveness of P fertilizers in tropical acid soils when it offers comparative advantages in assessing the soil P status and its changes. But trained staff and adequate laboratory facilities are needed to perform this technique. Also the method can be used as a reference for comparison purposes as in this case. Further research is needed to assess the overall agronomic effectiveness (immediate and residual effects) of PR sources in predominant cropping systems of this region of Ghana.  相似文献   

7.
Partial acidulation of phosphate rock (PR) or compaction of PR with soluble P fertilizers can improve the usefulness of unreactive PR for use as P fertilizer. A greenhouse study was conducted to evaluate nonconventional phosphate fertilizers derived from a low reactive Sukulu Hills PR from Uganda. Raw PR (which contained 341.0 g kg–1 Fe2O3), beneficiated or concentrate PR, partially acidulated PR (PAPR) and PR compacted with triple superphosphate (TSP) were evaluated. Compacted materials had a P ratio of PR:TSP = 50:50. PAPR materials were made by 50% acidulation with H2SO4. TSP was used as a reference fertilizer. Fertilizers were applied to an acidic (pH = 5.4) Hiwassee loam (clayey, kaolinitic, thermic Rhodic Kanhapludults) at rates of 0, 50, 100, 200, 300 and 400 mg P kg–1 soil. Two successive corn (Zea mays L.) crops were grown for 6 weeks. Compacted concentrate PR + TSP and raw PR + TSP were 94.4 and 89.7% as effective as TSP, respectively, in increasing dry-matter yields for the first corn crop. PAPR from the concentrate was 54.8% as effective as TSP. Raw PR, concentrate PR and the PAPR from the raw PR were ineffective in increasing dry-matter yields. The same trends were obtained when P uptake was used to compare effectiveness. Ineffectiveness of the raw PR and its corresponding PAPR was attributed to a high Fe2O3 content in the raw PR. Bray I and Pi paper were found to be nearly equally suitable at estimating available P in the soils treated with responsive fertilizer materials. Mehlich 1 overestimated available P in soil treated with raw PR, concentrate PR or the PAPR from the raw PR.  相似文献   

8.
The relative effectiveness (RE) of each one of three different sources of P—P in solution (Psol), triple superphosphate (TSP) and phosphate rock (PR)—for reflecting the availability of P in a P-deficient soil were assessed by measuring in Lotus tenuis variables associated with growth, organ morphology, and plant tissue P-content together with the amounts of P extracts from soil by two of the currently used soil-P tests—Bray I and Olsen. A hyperbolic equation was used to fit the response curves of each one of those plant variables to added-P. The ratio between the shapes of paired response curves of any P-sources was used to compute the RE and substitution rate (K) of one source relative to the other. More P was needed from TSP and PR compared to Psol-100% soluble P-source. On the average P applications as TSP relative to Psol and PR relative to TSP were only 68 and 63% effective respectively for plant growth. Plant roots were more sensitive than soil-P tests to detect shifts in P-availability from different P-sources. Because soil tests are commonly used to estimate the current P status in soil in order to calculate the optimum application levels of fertilizer P for a crop or pasture, these results would have practical agronomical consequences if reproduced in other cultivated species because they show that the response curve of a plant species as a function of added P and soil test might differ among fertilizer types, measured plant variables, and the test used to measure P availability in the soil.  相似文献   

9.
Field experiments were conducted in Niger with pearl millet (Pennisetum glaucum [L] R. Br.) in which the crop was fertilized with phosphate rock (PR) from two deposits from Niger (Tahoua and Parc W). The PR was applied either as ground rock or as partially acidulated phosphate rock (PAPR) and was compared to water soluble sources (TSP and SSP) in terms of millet yield response. The ability of five soil testing procedures (Bray P1, Bray P2, Mehlich 1, Olsen, and water extraction) to establish P sufficiency levels for millet was tested. The results of all soil testing methods were highly correlated amongst each other for the treatments receiving water-soluble fertilizers or PAPRs. None of the soil testing procedures which were evaluated was able to accurately measure available P when PRs were applied. Sufficiency levels were calculated for the PAPR and water-soluble fertilizers using nonlinear regression analysis and a graphic procedure for each of the P soil testing methods. The Bray P1 method appeared to be the most reliable procedure and was used to study the effect of accumulated total or total water + citrate-soluble P rates on final P availability. A single quadratic function was able to describe this effect when the P rates were expressed as water + citrate-soluble P for both PAPRs and water-soluble fertilizers independently of the P fertilizer source.  相似文献   

10.
The concretionary soils of Northern Ghana, which are near neutral with respect to pH and which comprise mostly lateritic ferruginous nodules are known to sorb significant amounts of phosphate. Instead of imported superphosphate, the use of less expensive indigenous Togo rock phosphate (PR) or partially acidulated (50%) Togo rock phosphate (PAPR-50), are possible alternative phosphate fertilizer options for these soils. The objective of this research was to evaluate the effectiveness of freshly-applied SSP, PR and PAPR-50, and the effectiveness of the residues of these fertilizers in a glasshouse pot study. Laboratory studies were also undertaken to study the transformation of these fertilizers after their application to the concretionary ferruginous soils. In the greenhouse study, yield of dried tops and the P uptake by the tops of maize var. Dobidi (Zea mays) was used to measure fertilizer effectiveness. One level of P was applied for each fertilizer (26.4 kg P ha–1). Plants were grown for 28 days. After harvesting the first crop, subsequent cropping was carried out to evaluate the effects of the residual P in the pots. The results showed that increases in dry matter yield of shoot and total P uptake followed the trend SSP > PAPR-50 > PR > control. The relative agronomic effciency (RAE) of PAPR-50 was 58% that of commercial SSP in increasing growth of the crop, while that of PR was only 23%. The residual effect of either PAPR-50 or PR on dry matter yield and total P uptake was found to be negligible compared with SSP, suggesting that apatitic P was poorly effective relative to SSP in the used soils. The P fractionation results confirmed that PR and PAPR-50 did not significantly increase any of the P fractions in either the soil fines or nodules after the first crop. By contrast, application of SSP increased all extractable Pi fractions, most of the P added being recovered from the nodules in forms associated with Fe (hydroxide and residual Pi).It is concluded that, relative to SSP, the P from residues of PAPR-50 and PR are poorly effective in the soils studied for sustainable plant production.  相似文献   

11.
A greenhouse study was conducted with two surface, acidic soils (a Hiwassee loam and a Marvyn loamy sand) to measure the effect of increasing P-fixation capacity, on the relative agronomic effectiveness (RAE) of phosphate fertilizers derived from Sukulu Hills phosphate rock (PR) from Uganda. Prior to fertilizer application, Fe-gel was added to increase P-fixation capacity from 4.4 to 14.3% for the Marvyn soil and from 37.0 to 61.5% for the Hiwassee soil. Phosphate materials included compacted Sukulu Hills concentrate PR + Triple superphosphate (CTSP) at a total P ratio of PR:TSP = 50:50; 50% partially acidulated PR (CPAPR) from Sukulu Hills concentrate PR made with H2SO4; and Sukulu Hills concentrate PR (PRC) made by magnetically removing iron oxide from raw PR ore. Triple superphosphate (TSP) was used as a reference fertilizer. After adjusting soil pH to approximately 6, P sources were applied at rates of 0, 50, 150, and 300 mg total P kg–1 soil. Two successive crops of 5 week old corn seedlings (Zea mays L.) were grown. The results show that the RAE of the phosphate materials measured using dry-matter yield or P uptake generally decreased as P-fixation capacity was increased for both soils. CTSP was more effective in increasing dry-matter yield and P uptake than CPAPR. PRC alone was an ineffective P source. Soil chemical analysis showed that Bray 1 and Mehlich 1 extractants were ineffective on the high P-fixation capacity Fe-gel amended Hiwassee soil. Mehlich 1 was unsuitable for soils treated with PRC since it apparently solubilizes unreactive PR. When all of the soils and P sources were considered together, Pi paper was the most reliable test for estimating plant available P.  相似文献   

12.
Phosphorus inputs are required in highly weathered tropical soils for sustainable crop production. However, high cost and limited access to mineral P fertilizers limit their use by resource-poor farmers in West Africa. Direct application of finely ground phosphate rock (PR) is a promising alternative but low solubility of PR hampers its use. Co-application of PR with manure could be a low cost means of improving the solubility of natural PR and improve their agronomic effectiveness. Our objective was to quantitatively estimate the enhancement effect of poultry manure on P availability from low reactive PR (Togo phosphate rock) applied to highly weathered soils. We utilized two highly weathered soils from Ghana and Brazil for this greenhouse study. Using 32P isotopic tracers, the agronomic effectiveness of poultry-manure-amended Togo rock phosphate (TPR) was compared with partially acidulated Togo rock phosphate (PAPR) and triple superphosphate (TSP). Four rates of poultry manure: 0, low (30 mg P kg−1 soil), high (60 mg P kg−1 soil) and very high (120 mg P kg−1 soil) were, respectively, added to a constant amendment (60 mg P kg−1 soil) of the P sources and applied to each pot of 4 kg soil. A Randomized Complete Block Design was used for the greenhouse experiment and Maize (Zea mays L.) was used as a test crop. The plants were grown for 42 days after which the above ground biomass was harvested for analysis. Without poultry manure addition, the agronomic effectiveness, represented by the relative agronomic effectiveness (RAE) and proportion of P derived from fertilizer (% Pdff) was in the order TSP > PAPR > TPR = control (P0). In the presence of low rate poultry manure addition, the agronomic effectiveness followed the order TSP > PAPR = PR > P0. However, at the high and very high rates of poultry manure addition, no significant differences in agronomic effectiveness were observed among the P sources, suggesting that at this rate of poultry manure addition, PR was equally as effective as TSP. The study showed that direct application of PR co-applied with poultry manure at a 1:1 P ratio will be a viable option for P replenishment. Thus a combination of PR and poultry manure could be a cost-effective means of ensuring sustainable agricultural production in P-deficient, highly weathered tropical soils.  相似文献   

13.
The agronomic effectiveness of unground North Carolina phosphate rock (PR) and partially acidulated phosphate rocks (PAPR) prepared by acidulation of the PR with 30%, 40% and 50% of the phosphoric acid needed for complete acidulation, was determined in a 4 year field experiment on permanent pastures. The soil developed from volcanic ash, and was highly P retentive. The rate of dissolution in soil of the PR component in PAPR and of PR applied directly was measured, together with bicarbonate extractable P. The priming effect of the monocalcium phosphate (MCP) component of PAPR on root growth was also investigated.Pasture yields showed that even the 30% acidulated PAPR was as effective as fully acidulated triple superphosphate (TSP), mainly due to the high reactivity of the PR used. The 50% acidulated PAPR tended to be superior to TSP. Soluble P in PAPR caused a marked increase in root proliferation, and dry matter yields were greater than predicted from the amounts of MCP and PR in PAPR. Directly applied PR was inferior to TSP in years 1 and 2 but was equal in year 4. (There was no pasture response to application of P fertilizers in year 3.)Dissolution rates of the PRs were determined applying a cubic model to PR dissolution data. The rate of dissolution increased with increasing acidulation and this is tentatively ascribed to increased root proliferation around PAPR granules and acidification of the clover rhizosphere during nitrogen fixation.  相似文献   

14.
A greenhouse experiment was conducted to evaluate varietal differences in the uptake and availability of P from Gafsa phosphate rock (PR) to five cowpea cultivars grown in a low-P Paleustult soil from Ghana, using the A value technique. The32P radioisotope used as a tracer was32P-labelled triple superphosphate (TSP). Each cultivar received sole or a combined application of the two fertilizers (TSP, PR). From these treatments it was possible to estimate for each cultivar, AR + AS, AS and by difference AR (AR and AS stand for A values for phosphate rock and soil, respectively). Using this approach we measured significant genotypic differences in P uptake from PR and AR values. The ranking of the cultivars in P uptake from PR was the same as for AR, i.e. Asontem > Vallenga > Soronko > IT81D-1137 > Amantin. Similarly, ranking for uptake from soil P was the same as AS, i.e. Vallenga, Soronko, IT81D-1137, Asontem and Amantin. Thus although PR could not be labelled directly, using the A value approach it was possible to distinguish between P availability from PR and soil to the plant. The recoveries of applied TSP ranged from 8.0% to 9.4% and those of PR from 2.3% to 3%.The other advantage of the A value method is that it made it possible for the different genotypes tested to be compared directly in units of a standard fertilizer, TSP in this case. Thus for Vallenga in this soil 3.01 kg of P in Gafsa PR was capable of supplying the same amount of P that could be supplied by 1 kg P of TSP; whereas for Amantin a higher amount i.e. 3.5 kg P as Gafsa PR was needed. This information is useful for adjusting application rates to be recommended for different P fertilizer sources in field trials so as to achieve similar effects.  相似文献   

15.
A glasshouse study was conducted to determine the influence of soil pH on the agronomic effectiveness of partially phosphoric (Phos-PAPR) and partially sulphuric (SA-PAPR) acidulated phosphate rocks (PR). For Phos-PAPR ground North Carolina PR (NCPR) was acidulated with 10, 30 and 50% of acid needed for complete acidulation. For SA-PAPR a blend of NCPR, Arad and Khouribga PRs were acidulated with 60% of the acid needed. The relative agronomic effectiveness of these PAPRs were compared with superphosphate (SSP) and ground NCPR. A highly phosphate (P) retentive and P deficient pasture soil was used. Prior to addition of fertilizers to soil, the pH of soil was adjusted to 5.1 (initial soil pH) 5.4, 5.7 and 6.1 by applying varying amounts of Ca(OH)2. Ryegrass (Lolium perenne) was grown as the test plant over a period of eight months. Fertilizers were applied at three rates plus control. Soil pH was monitored and continuously adjusted to the desired levels throughout the experimental period.The dry matter yields and P uptake in SSP treated pots were not influenced by soil pH. With increasing soil pH, agronomic performance of Phos-PAPRs and NCPR significantly (P<0.01) decreased but that of SA-PAPR was not affected. On the basis of per unit water-soluble P applied, uptake of P by plants was greater from PAPRs than SSP. Using the P uptake values of SSP and NCPR (which was used to prepare the PAPRs), the dissolution of P from the residual PR component of the PAPRs were calculated. The residual PR component of the Phos-PAPRs apparently dissolved in greater quantities than unacidulated NCPR. Dissolution of the residual PR was enhanced with increasing degree of acidulation. However, in the case of SA-PAPR, the agronomic performance of the PAPR was mostly dependent on the water-soluble P component of the PAPR. The uptake of P from the residual PR component of the SA-PAPR was insignificant.  相似文献   

16.
Isotope dilution techniques were used in a glasshouse experiment to compare seven P sources for oil palm seedlings grown on Rengam series soil (Typic Paleudult). The P sources were triple superphosphate (TSP) and six phosphate rocks from North Carolina, USA (NCPR), Tunisia (Gafsa PR), Jordan (JPR), Morocco (MPR), Christmas Island (CIPR) and China (CPR). The percent P derived from fertilisers (%PdfF) in the 3, 6, 9 and 12 months of growth ranged from 81% to 99%, indicating the poor P supplying power of the soil used. TSP was far superior than PR in supplying the required P at all times of measurement. Total amount of P taken up during the 12 months growing period was equivalent to 15.0% of the added P as TSP, it was 5.2% from NCPR, 4.2% from JPR, 4.1% from MPR, 3.2% from GPR, 4% from CIPR and 2.2% from CPR. The PR effectiveness based on the amounts of fertilizer P taken up by the oil palm seedlings at 12 months of growth was in the sequence of triple superphosphate > North Carolina PR > Gafsa PR Jordan PR Morocco PR Christmas Island PR > China PR. This was due to the reactivity of these P sources when applied into the soil, triple superphosphate being water soluble is immediately available. PR sources reacted with the soil solution with time, making P slowly available. PR solubilised by neutral ammonium citrate (NAC) expressed as percentage of rock was shown to correlate better than 2% citric acid and 2% formic acid with plant P uptake. Thus this method of extracting P from PR can be used as a basis for comparing PR effectiveness to oil palm seedlings.  相似文献   

17.
Partially acidulated phosphate rocks (PAPRs) are manufactured by acidulation of PRs with less than the stoichiometric amounts of, usually, phosphoric or sulphuric acids. Products of similar composition to PAPRs are also prepared by cogranulating superphosphate with PRs. For most crops the agronomic value of PAPRs is determined by the availability to plants of their water-soluble P as well as their PR P component. The acid unreacted PR present in the directly acidulated PAPR, is considered to be less reactive than the original PR. This is probably the result of surface coatings of chemical compounds formed during acidulation. Under some soil conditions, in the presence of plants, the PR component probably dissolves faster than the original PR. For seasonal crops, except for fast growing ones such as squash (Cucurbita maxima), reactive PRs partially acidulated so that the final products contain about 50% of its total P in water-soluble form, are generally as effective as fully acidulated superphosphate. For permanent pastures the water P content may be reduced to about 40% of total P without reducing their agronomic effectiveness of the product. In medium P retentive soils pH seems to have little or no influence on the agronomic effectiveness of PAPRs. In highly P retentive soils increasing soil pH reduces the agronomic effectiveness of phosphoric PAPRs apparently by reducing the solubility of the PR component of PAPRs. Even at low pH the dissolution of unreacted PR in sulphuric PAPRs is less than that in phosphoric PAPRs, probably due to the possible coating of calcium sulphate on the residual PR in sulphuric PAPRs. Results on the agronomic effectiveness of PAPRs prepared from unreactive rocks were highly variable and no generalisation could be made regarding the degree of acidulation needed for the products to be consistently effective. Single superphosphate (SSP) cogranulated with reactive rocks (SSP/PR) was agronomically less effective than SSP, and also than phosphoric PAPRs of similar water-soluble P.  相似文献   

18.
The agronomic effectiveness of two partially acidulated rock phosphate (PARP) fertilizers, made from either North Carolina or Moroccan apatite rock phosphate, and a fused calcium-magnesium phosphate (thermal phosphate or TP), was compared with the effectiveness of superphosphate in two glasshouse experiments. A different lateritic soil from Western Australia was used for each experiment. Oats (Avena sativa) were grown in one experiment and triticale (×Triticosecale) in the other. Fertilizer effectiveness was measured using (i) yield of dried tops, (ii) P content (P concentration in tissue multiplied by yield) of dried tops, and (iii) bicarbonate-extractable soil P (soil test value).The following relationships differed for the different fertilizers: (i) yield of dried tops and P content in the dried tops; (ii) yield and soil test values. Consequently the fertilizer effectiveness values calculated using yield data differed from those calculated using P content or soil test data. Freshly-applied superphosphate was always the most effective fertilizer regardless of the method used to calculate fertilizer effectiveness values. For one of the soils, as calculated using yield data, relative to freshly-applied superphosphate, the PARP and TP fertilizers were 15 to 30% as effective for the first crop, and 20 to 50% as effective for the second crop. The second soil was more acidic, and for the first crop the PARP and TP fertilizers were 80 to 90% as effective as freshly-applied superphosphate, but all fertilizers were only 5 to 15% as effective for the second crop. For each soil, the two PARP fertilizers had similar fertilizer effectiveness values. Generally the TP fertilizer was more effective than the PARP fertilizers.  相似文献   

19.
Phosphorus (P) inputs are required for sustainable agricultural production in most acid soils of the tropics and subtropics. Phosphate rocks (PR) and organic materials have been suggested as alternative P sources in these soils. Quantitative information on the P availability from sewage sludge (SL) is scanty. Methods to improve the effectiveness of PR such as partial acidulation and compaction with water-soluble P sources have been recommended. The objective of this greenhouse study was to evaluate the relative agronomic effectiveness (RAE) of Florida PR and sewage sludges (irradiated and non-irradiated) applied alone and in mixture with a water-soluble source (triple superphosphate, TSP) at two rates (50 and 150 mg P kg–1 soil). The 32P isotope dilution technique was utilised to determine the proportion of P in the plant taken up from the P fertilizer treatments. Wheat was grown on an acid loamy sand Dystric Eutrocrepts and harvested 6 weeks after planting. Results on total P uptake and the RAE of the P fertilizer sources tested indicated that the addition of 50 mg P kg–1 soil as TSP was adequate in supplying P to the 6-week-old wheat plants as compared to PR and sewage sludge. Intermediate values were obtained for the mixtures. Similar responses were observed for the high P rate. For a given P rate, phosphorus uptake from PR and SL in presence of TSP was higher than P uptake from these sources alone, indicating an enhancement effect of TSP on the effectiveness of these non-readily available sources. With respect to P uptake from PR applied alone, the relative increases in P uptake from PR due to TSP influence were 52 and 67% for the low and high P rates, respectively. The relative increases in P uptake from SL due to TSP when compared to P uptake from SL alone were 102 and 59% for the low and high P rates of application. Application of a water-soluble P fertilizer together with a non-readily available P source shows an enhancement on the P uptake from the non-readily available P source by the wheat plants. In this experiment the estimated enhancement effects are very likely underestimated.  相似文献   

20.
World phosphorus (P) resources are limited and may be exhausted within 70?C175 years. Therefore recycling of P from waste materials by chemical or thermal processes is important. This study evaluated the effectiveness of recycled P products from sewage sludge and animal wastes as P fertilizer. Four products were obtained from chemical processes, three magnesium-ammonium-phosphates (MAP) of different sewage treatment plants and a Ca phosphate precipitated from wastewater (Ca-P) and four from thermal processes, an alkali sinter phosphate (Sinter-P), a heavy metal depleted sewage sludge ash (Sl-ash), a cupola furnace slag made from sewage sludge (Cupola slag) and a meat-and-bone meal ash (MB meal ash). The effectiveness of these products as P fertilizers compared with triple superphosphate (TSP) and phosphate rock (PR) was determined in a 2-year pot experiment with maize (Zea mays L., cv. Atletico) in two soils with contrasting pH (pH(CaCl2) 4.7 and 6.6). The parameters used to evaluate the effectiveness were P uptake, P concentration in soil solution (CLi) and isotopically exchangeable P (IEP). MAP products were as effective as TSP in both soils, while Ca-P was only effective in the acid soil. Sinter-P was as effective as TSP in the acid soil, while Cupola slag was in the neutral soil. The products Sl-ash and MB meal ash were of low effectiveness and were comparable to PR. The effect of the fertilizers on IEP, but not on CLi, described their effectiveness. Recycled P products obtained by chemical processes, especially MAP, could be directly applied as P fertilizers, while products such as Sl-ash and MB meal ash are potential raw materials for P fertilizer production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号