首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
加筋砂土地基中加筋宽板效果的数值解析研究   总被引:1,自引:4,他引:1  
加筋砂土地基中加筋宽度(也即加筋材长度)的变化会对基础的承载力和地基的变形破坏带来很大的影响。为了对这种宽板效果及其加筋机理有一个合理的认识与理解,提出了一种非线性硬软化弹塑性有限元解析方法,并利用此方法对相关的室内模型试验结果进行了较为全面的数值解析。有限元解析中所采用的砂土本构模型以修正的塑性应变能量为硬软化基本参量,可以较为精确地模拟砂土的应力路径效果。结果表明,利用这种较高精度的有限元解析方法对加筋砂土地基的承载力及其变形破坏进行解析,不仅可以较好地再现加筋砂土地基的荷重与沉降关系的试验结果,同时也能合理地模拟模型实验中所观察到的渐进性剪切破坏模式。  相似文献   

2.
加筋砂土挡墙筋材层数影响的有限元分析   总被引:2,自引:0,他引:2  
彭芳乐  曹延波 《岩土工程学报》2011,33(11):1700-1707
利用非线性弹塑性有限元对具有不同筋材层数砂土挡墙的模型试验结果进行了系列性的模拟与分析。有限元解析采用了基于修正塑性功砂土的硬软化弹塑性本构模型,它可以同时考虑砂土强度的各向异性、应力水平相关性、剪切应变局部化特性以及应力路径效应等。研究结果表明,利用这种较高精度的有限元解析方法对加筋砂土挡墙的变形破坏进行分析,不仅能较好地模拟加筋砂土挡墙基础底面的平均压力与沉降之间的关系,同时也能较好地再现筋材层数变化对加筋砂土挡墙承载力与变形的加筋加固影响。虽然本文所分析的各种工况中加筋材的抗拉总刚度 ( 或总重量 ) 不变,但随着所划分筋材层数的增多,加筋砂土挡墙的承载力明显增大。另外,利用以上建议的有限元方法也能合理地模拟不同层数加筋砂土挡墙的剪切带发生发展状况、加筋材的拉力、面板的水平土压力分布、以及加筋砂土挡墙的渐进性变形破坏特性,从而为定量化地把握和理解加筋砂土挡墙中筋材层数的变化影响和加固效果提供了一个有效的途径。  相似文献   

3.
 为开发一种可以合理模拟加筋砂土挡墙承载力及渐进性变性破坏特征的数值分析方法,利用可考虑应变局部化的非线性弹塑性有限元法对一系列的加筋砂土挡墙模型试验结果进行从小变形到破坏的全过程数值分析。有限元分析中,砂土的本构关系采用基于修正塑性功的硬化–软化弹塑性模型,该模型引入应变局部化参数S用以描述砂土单元峰值以后的局部剪切破坏效果。模型试验结果与有限元计算结果比较表明:建议的非线性弹塑性有限元分析不仅可以较好地模拟分析加筋砂土挡墙基础底面的平均压力与沉降之间的关系,而且也能合理地模拟加筋砂土挡墙基础的剪切破坏的发生与发展状况、筋材的拉力以及挡墙面板的水平土压力分布等,它可以定量化地分析加筋砂土挡墙的渐进性变形破坏特征以及条带加筋材料的加固机制。  相似文献   

4.
为了研究软土地基在秸秆排水体加筋作用下的稳定性,采用数值模拟手段对不同加筋形式的软土地基进行相关研究,主要分析有无加筋、加筋层数以及加筋间距对软土地基的影响。模拟结果表明:秸秆排水体加筋可以改变软土地基破坏模式,加筋前为整体剪切破坏,加筋后为冲切破坏,加筋层数与加筋间距对软土地基的滑动破坏面影响较小;秸秆排水体加筋可以有效提高软土地基承载力;随着加筋层数的增大,软土地基承载能力越强;加筋间距越小,加筋效果越好。  相似文献   

5.
土工合成材料可以有效提高地基的承载力与减小地基的表面沉降差异。在静荷载作用下,采用室内模型试验方法对纯砂地基和土工格室加筋地基的地基承载力和沉降情况进行了对比分析,研究了格室埋深、格室高度及筋材层数对距离基础不同远近处地基沉降的影响。研究结果表明,在荷载较小时,土工格室加筋地基作用效果相近;在荷载较大时,土工格室加筋效果提高显著;土工格室加筋地基不仅有效控制了基础沉降,而且减小了基础附近地基的沉降差异;筋材调节地基不均匀沉降的加筋效果随筋材埋深减小、筋材层数增加、格室高度增加而有不同程度的提高。  相似文献   

6.
利用非线性弹塑性有限元,对无加筋砂土和采用光滑铜板的加筋砂土平面应变压缩试验结果进行从小变形到破坏的全过程数值解析.考虑到光滑铜板与砂土之间存在滑移,在有限元分析中采用Goodman连接单元作为界面单元.在有限元分析中还需考虑影响砂土变形强度的诸多特性,包括:(1) 围压大小的相关性;(2) 强度的各向异性;(3) 峰值前应变硬化及峰值后应变软化的非线性特性;(4) 剪胀性;(5) 应变局部化及剪切带形成特性等.结果表明,利用建议的有限元方法得到的加筋砂土平面应变压缩的应变-应力关系与室内试验结果吻合较好,最大应力比和峰值前刚度非常接近试验结果;提出的有限元分析方法可以较准确地捕捉到砂土的剪切带发生、发展状况,合理地模拟加筋砂土的渐进性破坏特性以及加筋材和砂土之间的相互作用机制.  相似文献   

7.
 采用缩尺模型试验研究加筋斜坡地基坡高范围内,不同加筋层数、不同筋带埋深对其极限承载力及破坏形态的影响。通过对比分析试验成果可获得不同加筋层数下最优筋带埋深组合及各试验地基的变形破坏资料。研究表明,在最优筋带埋深组合下,加筋斜坡地基的首层加筋间距随加筋层数的增加有减小趋势,而极限承载力随加筋层数的增加有增加趋势。根据各试验地基的p-s曲线、筋材破坏情况及变形破坏特征,可将不同加筋条件下斜坡地基的破坏形态分为加筋带之上土体破坏、加筋带层间土体破坏、加筋带之下土体破坏3类,并由此获得对应破坏类型的破坏形态图。研究成果对加筋斜坡地基极限承载力变化特性、变形特征及破坏形态的探究具有一定理论参考价值。  相似文献   

8.
师歌 《山西建筑》2014,(14):83-84
在国内外加筋垫层研究成果基础上,应用有限元分析研究了土工格栅加筋垫层与未加筋垫层地基位移场、应力场变化,并对影响加筋效果的因素进行了归纳总结,对工程中加筋深度、最佳层数、筋材模量等的选择具有参考价值。  相似文献   

9.
依据加筋地基理论和模型试验的结果 ,提出条形基础下的加筋砂土地基的破坏面为对数螺线滑裂面 ,运用极限平衡理论的上限原理推导出条形基础下加筋砂土地基承载力的上限解。计算结果与目前文献中有关长加筋的砂土地基的模型试验结果基本一致  相似文献   

10.
交通荷载作用下软基加筋道路加筋效果分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究交通荷载作用下考虑软土软化效应的软基加筋道路加筋效果的影响因素,首先以室内动三轴试验为基础,通过回归分析得到了软土在循环荷载作用下动模量衰减的经验公式;然后编制了用户子程序将该公式导入有限元分析软件ABAQUS中,采用有限元分析了荷载形式、荷载频率、筋材模量、加筋位置、加筋层数、软土层厚度等对加筋效果的影响。结果表明,随着荷载频率的增大,加筋效果呈减小趋势。加筋效果会随着筋材模量的增大和加筋层数的增多而增大。当筋材铺设在面层和基层之间时,加筋效果最好。在软土层厚度较小时,加筋效果随软土层深度增大有明显提高;但在软土层厚度较大时,加筋效果随软土深度增加提高较少。  相似文献   

11.
This research was performed to investigate the behavior of geosynthetic-reinforced sandy soil foundations and to study the effect of different parameters contributing to their performance using laboratory model tests. The parameters investigated in this study included top layer spacing, number of reinforcement layers, vertical spacing between layers, tensile modulus and type of geosynthetic reinforcement, embedment depth, and shape of footing. The effect of geosynthetic reinforcement on the vertical stress distribution in the sand and the strain distribution along the reinforcement were also investigated. The test results demonstrated the potential benefit of using geosynthetic-reinforced sand foundations. The test results also showed that the reinforcement configuration/layout has a very significant effect on the behavior of reinforced sand foundation. With two or more layers of reinforcement, the settlement can be reduced by 20% at all footing pressure levels. Sand reinforced by the composite of geogrid and geotextile performed better than those reinforced by geogrid or geotextile alone. The inclusion of reinforcement can redistribute the applied footing load to a more uniform pattern, hence reducing the stress concentration, which will result reduced settlement. Finally, the results of model tests were compared with the analytical solution developed by the authors in previous studies; and the analytical solution gave a good predication of the experimental results of footing on geosynthetic reinforced sand.  相似文献   

12.
This paper presents an experimental study on reduced-scale model tests of geosynthetic reinforced soil (GRS) bridge abutments with modular block facing, full-height panel facing, and geosynthetic wrapped facing to investigate the influence of facing conditions on the load bearing behavior. The GRS abutment models were constructed using sand backfill and geogrid reinforcement. Test results indicate that footing settlements and facing displacements under the same applied vertical stress generally increase from full-height panel facing abutment, to modular block facing abutment, to geosynthetic wrapped facing abutment. Measured incremental vertical and lateral soil stresses for the two GRS abutments with flexible facing are generally similar, while the GRS abutment with rigid facing has larger stresses. For the GRS abutments with flexible facing, maximum reinforcement tensile strain in each layer typically occurs under the footing for the upper reinforcement layers and near the facing connections for the lower layers. For the full-height panel facing abutment, maximum reinforcement tensile strains generally occur near the facing connections.  相似文献   

13.
Bearing capacity of square footings on geosynthetic reinforced sand   总被引:2,自引:0,他引:2  
The results from laboratory model tests and numerical simulations on square footings resting on sand are presented. Bearing capacity of footings on geosynthetic reinforced sand is evaluated and the effect of various reinforcement parameters like the type and tensile strength of geosynthetic material, amount of reinforcement, layout and configuration of geosynthetic layers below the footing on the bearing capacity improvement of the footings is studied through systematic model studies. A steel tank of size 900 × 900 × 600 mm is used for conducting model tests. Four types of grids, namely strong biaxial geogrid, weak biaxial geogrid, uniaxial geogrid and a geonet, each with different tensile strength, are used in the tests. Geosynthetic reinforcement is provided in the form of planar layers, varying the depth of reinforced zone below the footing, number of geosynthetic layers within the reinforced zone and the width of geosynthetic layers in different tests. Influence of all these parameters on the bearing capacity improvement of square footing and its settlement is studied by comparing with the test on unreinforced sand. Results show that the effective depth of reinforcement is twice the width of the footing and optimum spacing of geosynthetic layers is half the width of the footing. It is observed that the layout and configuration of reinforcement play a vital role in bearing capacity improvement rather than the tensile strength of the geosynthetic material. Experimental observations are supported by the findings from numerical analyses.  相似文献   

14.
采用FALC3D对土工格栅加筋土地基载荷试验进行了进一步的数值模拟分析。根据计算结果,针对原型试验中难以量测的试坑变形及筋土界面摩阻力分布特征进行了讨论。利用数值模拟技术的优势,求解加筋地基的应变场,研究了加筋地基的破坏模式。结果表明:在竖向荷载作用下,试坑会发生侧向位移,通过加筋能有效减小试坑的侧向位移;筋土界面摩阻力的分布与筋土之间的相对位移直接相关;加筋地基的破坏机构因筋材的存在而发生改变,“深基础”效应以及“扩散层”效应都是加筋地基的增强机理,但地基的破坏模式随筋材的布置形式改变而有所不同。  相似文献   

15.
The effect of non-woven geotextile reinforcement on the stability and deformation of two clay test embankments is examined based on their performance for about 3 years for the first embankment and about years for the other. Horizontal planar sheets of a non-woven geotextile are expected to work in three ways: for compaction control; for drainage; for tensile reinforcement. The degree of stability of the steep slopes of the test embankments decreased during heavy rainfall. It is found that the use of non-woven geotextile reinforcement may effectively improve embankment performance. Only the stability analysis in terms of effective stresses can explain the performance of the test embankments. The horizontal creep deformation of the embankments during 2–3 years, which is partly attributed to the creep deformation of the non-woven geotextile, was found to be small. The results of both laboratory bearing capacity tests of a strip footing on a model sand ground reinforced with the non-woven geotextile and plane strain compression tests on sand specimens reinforced with the non-woven geotextile show that the non-woven geotextile gives tensile reinforcement to soils.  相似文献   

16.
Many earlier studies were focused on testing different types of geosynthetics to investigate effect of reinforcement on bearing capacity, but the effect of tensile strength on the failure mechanism has not been examined sufficiently. Within this scope, a test setup was prepared to apply strip loads on densely compacted reinforced sand under the plane strain condition. The tank containing the reinforced sand was a rectangular prism with perfect transparency, and its interior dimensions were 960 × 200 × 650 mm3. Firstly, optimum values of design variables (depth of first sheet, length and number of sheets, space between sheets, tensile strength of sheets) for the woven geotextile reinforced sand were determined experimentally. Then, the failure mechanisms of the soil, which were reinforced with geotextiles of different tensile strengths, were observed and analyzed with particle image velocimetry (PIV) technique. Consequently, the failure mechanism of the sand with a single geotextile reinforcement was similar to general shear failure of unreinforced soil. Contrarily, the failure surfaces were deeper and longer. Additionally, the deep-footing mechanism reached out large depth in the case of four reinforcement layers. The failure mechanism converted into a punching type due to a hypothetic increase in the bearing depth of reinforcement.  相似文献   

17.
This paper presents a numerical study of maximum reinforcement tensile forces for geosynthetic reinforced soil (GRS) bridge abutments. The backfill soil was characterized using a nonlinear elasto-plastic constitutive model that incorporates a hyperbolic stress-strain relationship with strain softening behavior and the Mohr-Coulomb failure criterion. The geogrid reinforcement was characterized using a hyperbolic load-strain-time constitutive model. The GRS bridge abutments were numerically constructed in stages, including soil compaction effects, and then loaded in stages to the service load condition (i.e., applied vertical stress?=?200?kPa) and finally to the failure condition (i.e., vertical strain?=?5%). A parametric study was conducted to investigate the effects of geogrid reinforcement, backfill soil, and abutment geometry on reinforcement tensile forces at the service load condition and failure condition. Results indicate that reinforcement vertical spacing and backfill soil friction angle have the most significant effects on magnitudes of maximum tensile forces at the service load condition. The locus of maximum tensile forces at the failure condition was found to be Y-shaped. Geogrid reinforcement parameters have little effect on the Y-shaped locus of the maximum tensile forces when no secondary reinforcement layers are included, backfill soil shear strength parameters have moderate effects, and abutment geometry parameters have significant effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号