首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
Developing injectable nanocomposite conductive hydrogel dressings with multifunctions including adhesiveness, antibacterial, and radical scavenging ability and good mechanical property to enhance full‐thickness skin wound regeneration is highly desirable in clinical application. Herein, a series of adhesive hemostatic antioxidant conductive photothermal antibacterial hydrogels based on hyaluronic acid‐graft‐dopamine and reduced graphene oxide (rGO) using a H2O2/HPR (horseradish peroxidase) system are prepared for wound dressing. These hydrogels exhibit high swelling, degradability, tunable rheological property, and similar or superior mechanical properties to human skin. The polydopamine endowed antioxidant activity, tissue adhesiveness and hemostatic ability, self‐healing ability, conductivity, and NIR irradiation enhanced in vivo antibacterial behavior of the hydrogels are investigated. Moreover, drug release and zone of inhibition tests confirm sustained drug release capacity of the hydrogels. Furthermore, the hydrogel dressings significantly enhance vascularization by upregulating growth factor expression of CD31 and improve the granulation tissue thickness and collagen deposition, all of which promote wound closure and contribute to a better therapeutic effect than the commercial Tegaderm films group in a mouse full‐thickness wounds model. In summary, these adhesive hemostatic antioxidative conductive hydrogels with sustained drug release property to promote complete skin regeneration are an excellent wound dressing for full‐thickness skin repair.  相似文献   

3.
The challenge of bacterial infection increases the risk of mortality and morbidity in acute and chronic wound healing. Silver nanoparticles (Ag NPs) are a promising new version of conventional antibacterial nanosystem to fight against the bacterial resistance in concern of the drug discovery void. However, there are several challenges in controlling the size and colloidal stability of Ag NPs, which readily aggregate or coalesce in both solid and aqueous state. In this study, a template‐guided synthesis of ultrafine Ag NPs of around 2 nm using water‐soluble and biocompatible γ‐cyclodextrin metal‐organic frameworks (CD‐MOFs) is reported. The CD‐MOF based synthetic strategy integrates AgNO3 reduction and Ag NPs immobilization in one pot achieving dual functions of reduced particle size and enhanced stability. Meanwhile, the synthesized Ag NPs are easily dispersible in aqueous media and exhibit effective bacterial inhibition. The surface modification of cross‐linked CD‐MOF particles with GRGDS peptide boosts the hemostatic effect that further enhances wound healing in synergy with the antibacterial effect. Hence, the strategy of ultrafine Ag NPs synthesis and immobilization in CD‐MOFs together with GRGDS modification holds promising potential for the rational design of effective wound healing devices.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号