首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of a single set of outriggers equipped with oil viscous dampers increases the damping ratio of tall buildings in about 6–10%, depending on the loading conditions. However, could this ratio be further increased by the addition of another set of outriggers? Should this additional set include dampers too? To answer these questions, several double damped outrigger configurations for tall buildings are investigated and compared with an optimally designed single damped outrigger, located at elevation 0.7 of the total building's height (h). Using free vibration, double outrigger configurations increasing damping up to a ratio equal to the single‐based optimal are identified. Next, selected configurations are subjected to several levels of eight ground motions to compare their capability for avoiding damage under critical excitations. Last, a simplified economic analysis highlights the advantages of each optimal configuration in terms of cost savings. The results show that, within the boundaries of this study, combining a damped outrigger at 0.5h with a conventional outrigger at 0.7h is more effective in reducing hysteretic energy ratios and economically viable if compared with a single damped outrigger solution. Moreover, double damped outrigger configurations for tall buildings exhibit broader display of optimal combinations, which offer flexibility of design to the high‐rise architecture.  相似文献   

2.
The seismic design of optimal damped outrigger structures relies on the assumption that most of the input energy will be absorbed by the dampers, whilst the rest of the structure remains elastic. When subjected to strong earthquakes, nevertheless, the building structure may exhibit plastic hinges before the dampers begin to work. In order to determine to which extent the use of viscously damped outriggers would avoid damage, both the host structure's hysteretic behaviour and the dampers' performance need to be evaluated in parallel. This article provides a parametric study on the factors that influence the distribution of seismic energy in tall buildings equipped with damped outriggers: First, the influence of outrigger's location, damping coefficients, and rigidity ratios core‐to‐outrigger and core‐to‐column in the seismic performance of a 60‐story building with conventional and with damped outriggers is studied. In parallel, nonlinear behaviour of the outrigger with and without viscous dampers is examined under small, moderate, strong, and severe long‐period earthquakes to assess the hysteretic energy distribution through the core and outriggers. The results show that, as the ground motion becomes stronger, viscous dampers effectively reduce the potential of damage in the structure if compared to conventional outriggers. However, the use of dampers cannot entirely prevent damage under critical excitations.  相似文献   

3.
中国国际丝路中心超高层建筑总高度498 m,位于陕西省西安市,抗震设防烈度8度,该结构的侧向变形和承载力均由地震作用控制.为解决结构侧向刚度不足的问题,设置了伸臂桁架加强层,然而传统伸臂桁架往往会造成结构刚度和承载力突变等问题.为此,采用基于刚性伸臂和黏滞阻尼伸臂的组合伸臂桁架技术,研究刚性伸臂桁架和黏滞阻尼伸臂桁架在...  相似文献   

4.
以最大层间位移角为优化目标,提出一种简单有效的向量积算法,可以快速确定最优的伸臂桁架设置数目及位置。以上海中心大厦为例,给出了该算法的应用方法及过程,并结合分析结果对带伸臂超高层结构的最优伸臂道数及位置的设置规律进行了分析。对于典型的100层以上的超高层建筑,向量积算法的效率比常规的穷举法提高约28倍。分析表明,最优的伸臂桁架设置方案与桁架设置的数目和位置均有关系,且伸臂桁架设置方案的最优性并非随着伸臂桁架数目的增加而增加。  相似文献   

5.
This paper introduces a seismic energy dissipation technology—viscous damping outrigger (VDO)—which is composed of outrigger truss and viscous damper. The viscous damper is set up vertically at the end of outrigger truss, which is an innovative and high‐efficiency arrangement. VDO can fully utilize the characteristic of structural lateral deformation of super high‐rise buildings to increase the efficiency of viscous dampers for enhancing structural security, improving seismic performance, and reducing construction expenditure. In this paper, working principle and seismic energy dissipating mechanism of VDO are explained firstly. Then, the influence of viscous damper parameters on energy dissipation efficiency is studied. Next, the optimal position of VDO in a super high‐rise building is analyzed in detail. Lastly, the application of VDO in structural seismic design of a super high‐rise building in China will be clearly verified based on their feasibility, economy, and safety.  相似文献   

6.
为提高黏滞阻尼伸臂桁架在地震作用下的耗能效率,设计了一种带位移放大装置的黏滞阻尼伸臂桁架。对分别设置传统型和位移放大型黏滞阻尼伸臂桁架的超高层结构进行有限元分析,对比了结构的地震响应及阻尼器的工作状态。通过动力荷载试验,考察两种黏滞阻尼伸臂桁架的滞回性能,对比阻尼器的位移及耗能,研究位移放大系数的变化规律,分析伸臂桁架刚度对黏滞阻尼伸臂桁架工作效率的影响。结果表明:相比传统型黏滞阻尼伸臂桁架,采用位移放大型黏滞阻尼伸臂桁架可将阻尼器的耗能效率提高至原来的1.5~1.8倍,使结构获得更好的减震效果;位移放大型黏滞阻尼伸臂桁架滞回曲线光滑、对称、饱满,具有良好的工作性能,且能有效放大阻尼器的工作位移并增大耗能;提出了黏滞阻尼伸臂桁架的位移放大系数的计算式,计算值与试验值吻合较好;为保证黏滞阻尼伸臂桁架的工作效率,建议伸臂桁架的刚度比取值不小于9。  相似文献   

7.
This paper presents a general solution for performance evaluation of a tall building with multiple damped and undamped outriggers. First, general rotational stiffness (GRS) is proposed to model an outrigger that consists of the stiffness of perimeter columns and an outrigger connection and the damping of dampers in an outrigger. By utilizing the dynamic stiffness method, the GRS can be represented by complex stiffness in an outrigger element. To analyze the dynamic characteristics of a tall building with multiple outriggers, a dynamic transcendental equation is obtained from the combination of the GRS and dynamic stiffness method. The structural responses can be calculated through the Fourier transform based on this equation. Moreover, the GRS can also be blended into a finite element (FE) model to generate an augmented state‐space equation for the analysis of the dynamic characteristics and structural responses. Applications to various outriggers are illustrated. In the numerical analysis, good agreements are found between the GRS and the FE that validates the proposed method, and the performances of various outrigger systems are evaluated parametrically. As the results of a tall building with multiple damped or undamped outriggers, the proposed method is capable of providing an optimally parametric design with respect to the position of outriggers, damping, and core‐to‐column and core‐to‐outrigger stiffness ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The outrigger system has been widely adopted as an efficient structural lateral‐load resisting system for super‐tall buildings in recent years. Although the outrigger system has many structural advantages, it has a significant defect due to differential shortening, which cannot be neglected. Due to the shrinkage and creep of concrete, as well as the differential settlement of foundation, the shortening of the structural member is an important time‐dependent issue, which leads to additional forces in the outriggers after the lock‐in of the outriggers. As a result, it will increase the size of the structural member cross section in the design. In a real project, engineers can delay the lock‐in time of the outrigger system to release the additional forces caused by the differential shortening during the construction phase. The time‐dependent actions, such as the column shortening and the differential settlement of the foundation, were estimated. A mega frame steel structure was employed to illustrate the analysis and design of the outrigger under the time‐dependent actions. Furthermore, a simple optimal method, considering the structural stability and overall stiffness, was proposed to optimize the construction sequence of the outrigger system.  相似文献   

9.
赵昕  张鸿玮 《工业建筑》2014,(Z1):248-253
屈曲约束支撑以其金属的轴向变形产生耗能,其轴向变形值往往决定其阻尼耗能的发挥。作为超高层建筑的变形限值之一,层间位移角由受力层间位移角和非受力层间位移角两部分组成,受力层间位移角的原因为屈曲约束支撑区格的剪切变形所致。引入广义剪切变形,探讨屈曲约束支撑区格剪切变形量的变化原理,并发展了一种基于该剪切变形的屈曲约束支撑最优布置方法,其方法可从结构局部位移指标的层面上判断约束支撑的最优位置。最后以一带环带桁架的支撑框架核心筒超高层建筑为例,并应用非线性时程分析的方法,说明该最优布置方法的有效性。结果表明,用广义剪切变形方法得到的屈曲约束支撑布置位置与实际能得到的最优位置较为吻合,因此可为超高层建筑屈曲约束支撑和其他金属阻尼器的设计提供一定的借鉴。  相似文献   

10.
This paper aims to improve the seismic performance of outriggers within supertall buildings and eliminate the defects of obvious degradation of stiffness, low energy dissipation capacity, and large residual deformation after the buckling of traditional diagonal members by presenting a new type of outrigger. The traditional profiled steel diagonal member is replaced with a self‐centering viscoelastic diagonal brace (SC‐VEDB) in the proposed outrigger, providing enhanced energy dissipation and self‐centering capacity. The new SC‐VEDB is composed of the inner and outer steel tubes, viscoelastic materials, and prestressed tendons. Energy dissipation capacity is produced by the shear deformation of viscoelastic materials, whereas prestressed tendons provide the self‐centering capacity. The working mechanism of SC‐VEDB is first theoretically analyzed. Following this, two specimens with a length of 2.2 m were designed, fabricated, and tested under low cyclic reversed loadings within different frequencies and pretension forces. The results confirm that the hysteretic curve of SC‐VEDB has a typical flag shape, which imparts the stable stiffness, good energy dissipation, and self‐centering capacities. The activation force of SC‐VEDB is mainly determined by the initial pretension force, and the post‐activation stiffness predominantly depends on the stiffness of the prestressed tendons. Moreover, SC‐VEDB has better repairability, and the initial hysteretic behavior of the component can be quickly recovered by replacing the damaged prestressed tendons. A refined finite element model for SC‐VEDB is established to predict its hysteretic behavior, and the numerical simulation corresponds well with the experimental results. The maximum relative error of the initial elastic stiffness and ultimate strength is approximately 4.6% and 1.3%, respectively, which verifies the accuracy of the SC‐VEDB numerical simulation method.  相似文献   

11.
Fragility curves development in structures has always been a focus of research interest among structural and earthquake engineers for which the maximum story drift is usually considered as the engineering demand parameter (EDP) known as the conventional approach. This paper aims at calculating the fragility curves of a tall building with outrigger braced system by considering the plastic strain energy as the EDP and compare it with the conventional approach. In addition, the effect of optimizing the position of outriggers on the exceedance probability of the structure under near- and far-fault seismic loadings is investigated in this paper. Fragility curves of this structure in four performance levels including immediate occupancy (IO), life safety (LS), collapse prevention (CP), and instability is extracted based on the conventional method. The fragility curves for the aforementioned performance levels are also extracted based on the plastic strain energy and compared with the conventional approach. The results have demonstrated that optimizing the location of the bracing system would lower the exceedance probability of the structure. Moreover, the exceedance probability of the investigated building with outrigger braced system under far-fault records in various levels is more than that of near-fault records. It is also concluded that the conventional approach would lead to more conservative results compared with the energy approach.  相似文献   

12.
Damped outriggers for tall buildings draw increasingly attentions to engineers. With a shaking table test, two models of a high‐rise steel column‐tube structure are established, one with outriggers fixed to the core and hinged at the columns, whereas the other's cantilevering outriggers are connected to columns by viscous dampers. According to their dynamic properties, five earthquake waves are selected from the Ground Motion Database of Pacific Earthquake Engineering Research Center (PEER), and two artificial waves are generated by software SIMQKE_GR. Under various peak ground accelerations (PGAs), nonlinear time‐history analysis is applied to compare structural elastic seismic responses, including accelerations, inter‐story drifts, base shear force, damper's response and additional damping ratios. It is concluded that under minor earthquakes, accelerations, inter‐story drifts and base shear force of structure with damped outriggers are larger than or nearly equal to those of the one with fixed outriggers, and the viscous dampers hardly work. But as PGA increases, the contrary situation happens, and the effect of viscous dampers is enhanced as well. The additional damping ratio reaches around 4% under mega earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the geometric nonlinear behavior of wall‐frame tall building structures is analyzed. The governing equations of the wall‐frame systems with outrigger trusses are formulated through the continuum approach, and the whole structure is idealized as a shear‐flexural cantilever with rotational spring. The effect of shear and flexural deformation of the wall frame and outrigger trusses are considered and incorporated in the formulation of the governing equations. Geometric nonlinearity in the sense of von Karman is included in the formulation, and Newton–Raphson iterative method is employed to solve the nonlinear equations. A displacement‐based one‐dimensional nonlinear finite element model is developed. Numerical results for wall frame and mega‐column structures with outriggers are obtained and compared with the finite element package MIDAS. The proposed method is found to be simple and efficient, providing reasonably accurate results in early design stages of tall building structures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
段海  汪晓阳  张希博 《工业建筑》2014,(11):141-144
在水平荷载起控制作用的超高层建筑中,设置伸臂桁架可以提高结构的整体工作性能,从而提高结构的抗侧刚度,控制结构的顶部位移,降低核心筒所承担的倾覆力矩。但是,伸臂桁架在施工阶段,由于内外筒施工不同步,结构布置不对等原因,会导致施工过程中内、外筒的变形存在一定差异,如果盲目施工,将会造成在伸臂桁架内部过早产生较大应力,导致结构成形后整体受力状况与原结构设计模型不符。通过研究,提出一种超高层伸臂桁架"延迟连接"的施工技术。该方法在沈阳恒隆广场主塔楼施工应用的情况表明,可有效解决外框与芯筒不均衡变形导致的伸臂桁架应力过大的问题,确保了伸臂桁架施工和使用阶段的结构性能。  相似文献   

15.
Outriggers are usually added in structural systems of tall buildings to collaborate central shear walls with peripheral columns. With outriggers, the structural overturning moment can be balanced, and the inter‐story drift can be controlled under horizontal loads. Therefore, the optimal location of outriggers plays a very important role in controlling the behavior of the whole building. Existing research has focused on the optimal position of outriggers on the base of the structural roof deflection. In the engineering practice, however, inter‐story drift is the most important target to control the design of tall building structures. This paper investigates the theoretical method of inter‐story drift‐based optimal location of outriggers. A Matlab program is written to perform the parameter analysis of optimal location of outriggers. Take a 240‐m tall building for a target building, the optimal location of one to three sets of outriggers under wind and earthquakes is obtained and can be utilized for the structural preliminary design of tall buildings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
结合武汉中心超高层结构设计,对伸臂桁架-核心筒剪力墙节点进行拟静力试验。节点按构造分为钢板外包式和钢板内嵌式两种,通过对两类试件进行低周往复试验,对节点的承载力、刚度、延性和耗能能力进行分析,结果表明,试验采用的两种不同构造形式的伸臂桁架-核心筒剪力墙节点均具有良好的承载能力、延性和耗能能力,抗震性能优越。同时,对两种节点构造从施工工艺、破坏模式及混凝土裂缝开展情况等方面进行对比,结果表明,外包钢板构造优于内嵌钢板构造,其施工更为便捷,稳定承载力更高,混凝土剪力墙裂缝较少。本文研究成果为武汉中心超高层建筑结构加强层设计提供重要依据,可为伸臂桁架-核心筒剪力墙节点在超高层建筑结构中的应用提供参考。  相似文献   

17.
Due to its advantages, the outrigger braced system has been employed in high‐rise structures for the last 3 decades. It is evident that the numbers and locations of outriggers in this system have a crucial impact on the performance of high‐rise buildings. In this paper, a multiobjective genetic algorithm (MGA) is applied to an existing mathematical model of outrigger braced structures and a practical project to achieve Pareto optimal solutions, which treat the top drift and core base moment of a high‐rise building as 2 trade‐off objective functions. MATLAB was employed to explore a multiobjective automatic optimization procedure for the optimal design of outrigger numbers and locations under wind load. In this research, various schemes for the preliminary stages of design can be obtained using MGA. This allows designers and clients easily to compare the performance of structural systems with different numbers of outriggers in different locations. In addition, design results based on MGA offer many other benefits, such as diversity, flexible options for designers, and active client participation.  相似文献   

18.
杨航  陈麟  周云 《工业建筑》2011,41(3):63-67,98
巨型混合框架-核心筒结构是由巨型型钢混凝土框架、混凝土核心筒与伸臂桁架组成的一种具有多道抗震防线的超高层结构体系.为了有效地提高巨型混合框架-核心筒结构的抗侧刚度和内外筒之间的协同工作性能,可采取以下措施:增加巨型梁的刚度;增加伸臂桁架的刚度;增设巨型支撑.分析结果表明:设置跨越两个楼层的巨型梁或伸臂,或增设巨型支撑,...  相似文献   

19.
Certain maximum lateral displacement (LAT) and differential axial shortening (DAS) values can lead to the deterioration of the serviceability of a structure. Previous studies indicated that an outrigger system can be used to control both the DAS and the LAT in a tall building. In order to enhance the applicability of the dual‐purpose outrigger system, the amount of stress developed on the outrigger due to the reductions of the LAT and DAS should be determined. Therefore, in this study, the stresses due to the LAT and DAS were analyzed in terms of the reduction ratio of the LAT and DAS, and the absolute sum of stresses, which was the strength demand of the outrigger, was evaluated as well. To identify the parameters affecting the additional stress of the outrigger, analytic equations were proposed to predict the additional shear force acting on the outrigger due to DAS reduction. A finite‐element analysis was performed to quantitatively identify the reduction ratio of the LAT and DAS as well as the resulting stress by changing four parameters: the stiffness, location, number, and connection time of outriggers. The results demonstrated that the stress of the dual‐purpose outrigger can be minimized by adjusting the design parameters.  相似文献   

20.
以一栋超高层办公楼为例,介绍了工程结构的抗震性能目标及耗能装置耗能目标,将可恢复功能防震结构的概念从理论应用到实际工程中。在传统抗震结构布置的基础上,根据结构受力特点布置了BRB、软钢连梁、伸臂阻尼及阻尼墙等耗能装置,并进行了多遇地震作用下的弹性分析和罕遇地震、极罕遇地震作用下的弹塑性分析。多遇地震作用下的弹性分析结果表明,结构主要指标均满足规范要求;罕遇地震作用下的弹塑性分析结果表明,可更换构件及黏滞阻尼构件充分耗能,能够有效地控制结构的残余层间位移角及结构的损伤,结构整体具有良好的震后可恢复性能;极罕遇地震作用下的弹塑性分析结果表明,结构可达到“不倒”的性能目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号