共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigating the Hybrid‐Structure‐Effect of CeO2‐Encapsulated Au Nanostructures on the Transfer Coupling of Nitrobenzene 下载免费PDF全文
Jian Li Shuyan Song Yan Long Lanlan Wu Xiao Wang Yan Xing Rongchao Jin Xiaogang Liu Hongjie Zhang 《Advanced materials (Deerfield Beach, Fla.)》2018,30(7)
Due to the obvious distinctions in structure, core–shell nanostructures (CSNs) and yolk–shell nanostructures (YSNs) exhibit different catalytic behavior for specific organic reactions. In this work, two unique autoredox routes are developed to the fabrication of CeO2‐encapsulated Au nanocatalysts. Route A is the synthesis of well‐defined CSNs by a one‐step redox reaction. The process involves an interesting phenomenon in which Ce3+ can act as a weak acid to inhibit the hydrolysis of Ce4+ under the condition of OH? shortage. Route B is the fabrication of monodispersed YSNs by a two‐step redox reaction with amorphous Co3O4 as an in situ template. Furthermore, the transfer coupling of nitrobenzene is chosen as a probe reaction to investigate their catalytic difference. The CSNs can gradually achieve the conversion of nitrobenzene into azoxybenzene, while the YSNs can rapidly convert nitrobenzene into azobenzene. The different catalytic results are mainly attributed to their structural distinctions. 相似文献
2.
3.
Hsin‐Yi Wang Fang‐Xing Xiao Le Yu Bin Liu Xiong Wen Lou 《Small (Weinheim an der Bergstrasse, Germany)》2014,10(15):3181-3186
A facile two‐step solution‐phase method has been developed for the preparation of hierarchical α‐MnO2 nanowires@Ni1‐xMnxOy nanoflakes core–shell nanostructures. Ultralong α‐MnO2 nanowires were synthesized by a hydrothermal method in the first step. Subsequently, Ni1‐xMnxOy nanoflakes were grown on α‐MnO2 nanowires to form core–shell nanostructures using chemical bath deposition followed by thermal annealing. Both solution‐phase methods can be easily scaled up for mass production. We have evaluated their application in supercapacitors. The ultralong one‐dimensional (1D) α‐MnO2 nanowires in hierarchical core–shell nanostructures offer a stable and efficient backbone for charge transport; while the two‐dimensional (2D) Ni1‐xMnxOy nanoflakes on α‐MnO2 nanowires provide high accessible surface to ions in the electrolyte. These beneficial features enable the electrode with high capacitance and reliable stability. The capacitance of the core–shell α‐MnO2@Ni1‐xMnxOy nanostructures (x = 0.75) is as high as 657 F g?1 at a current density of 250 mA g?1, and stable charging‐discharging cycling over 1000 times at a current density of 2000 mA g?1 has been realized. 相似文献
4.
Mesoporous Hollow Sb/ZnS@C Core–Shell Heterostructures as Anodes for High‐Performance Sodium‐Ion Batteries 下载免费PDF全文
Shihua Dong Caixia Li Zhaoqiang Li Luyuan Zhang Longwei Yin 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(16)
Combining the advantage of metal, metal sulfide, and carbon, mesoporous hollow core–shell Sb/ZnS@C hybrid heterostructures composed of Sb/ZnS inner core and carbon outer shell are rationally designed based on a robust template of ZnS nanosphere, as anodes for high‐performance sodium‐ion batteries (SIBs). A partial cation exchange reaction based on the solubility difference between Sb2S3 and ZnS can transform mesoporous ZnS to Sb2S3/ZnS heterostructure. To get a stable structure, a thin contiguous resorcinol‐formaldehyde (RF) layer is introduced on the surface of Sb2S3/ZnS heterostructure. The effectively protective carbon layer from RF can be designed as the reducing agent to convert Sb2S3 to metallic Sb to obtain core–shell Sb/ZnS@C hybrid heterostructures. Simultaneously, the carbon outer shell is beneficial to the charge transfer kinetics, and can maintain the structure stability during the repeated sodiation/desodiation process. Owing to its unique stable architecture and synergistic effects between the components, the core–shell porous Sb/ZnS@C hybrid heterostructure SIB anode shows a high reversible capacity, good rate capability, and excellent cycling stability by turning the optimized voltage range. This novel strategy to prepare carbon‐layer‐protected metal/metal sulfide core–shell heterostructure can be further extended to design other novel nanostructured systems for high‐performance energy storage devices. 相似文献
5.
Jinyou Xu Katya Rechav Ronit Popovitz‐Biro Iftach Nevo Yishay Feldman Ernesto Joselevich 《Advanced materials (Deerfield Beach, Fla.)》2018,30(20)
1D core–shell heterojunction nanostructures have great potential for high‐performance, compact optoelectronic devices owing to their high interface area to volume ratio, yet their bottom‐up assembly toward scalable fabrication remains a challenge. Here the site‐controlled growth of aligned CdS–CdSe core–shell nanowalls is reported by a combination of surface‐guided vapor–liquid–solid horizontal growth and selective‐area vapor–solid epitaxial growth, and their integration into photodetectors at wafer‐scale without postgrowth transfer, alignment, or selective shell‐etching steps. The photocurrent response of these nanowalls is reduced to 200 ns with a gain of up to 3.8 × 103 and a photoresponsivity of 1.2 × 103 A W?1, the fastest response at such a high gain ever reported for photodetectors based on compound semiconductor nanostructures. The simultaneous achievement of sub‐microsecond response and high‐gain photocurrent is attributed to the virtues of both the epitaxial CdS–CdSe heterojunction and the enhanced charge‐separation efficiency of the core–shell nanowall geometry. Surface‐guided nanostructures are promising templates for wafer‐scale fabrication of self‐aligned core–shell nanostructures toward scalable fabrication of high‐performance compact photodetectors from the bottom‐up. 相似文献
6.
Ni2P@Carbon Core–Shell Nanoparticle‐Arched 3D Interconnected Graphene Aerogel Architectures as Anodes for High‐Performance Sodium‐Ion Batteries 下载免费PDF全文
Xianguang Miao Ruiyang Yin Xiaoli Ge Zhaoqiang Li Longwei Yin 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(44)
To alleviate large volume change and improve poor electrochemical reaction kinetics of metal phosphide anode for sodium‐ion batteries, for the first time, an unique Ni2P@carbon/graphene aerogel (GA) 3D interconnected porous architecture is synthesized through a solvothermal reaction and in situ phosphorization process, where core–shell Ni2P@C nanoparticles are homogenously embedded in GA nanosheets. The synergistic effect between components endows Ni2P@C/GA electrode with high structural stability and electrochemical activity, leading to excellent electrochemical performance, retaining a specific capacity of 124.5 mA h g?1 at a current density of 1 A g?1 over 2000 cycles. The robust 3D GA matrix with abundant open pores and large surface area can provide unblocked channels for electrolyte storage and Na+ transfer and make fully close contact between the electrode and electrolyte. The carbon layers and 3D GA together build a 3D conductive matrix, which not only tolerates the volume expansion as well as prevents the aggregation and pulverization of Ni2P nanoparticles during Na+ insertion/extraction processes, but also provides a 3D conductive highway for rapid charge transfer processes. The present strategy for phosphides via in situ phosphization route and coupling phosphides with 3D GA can be extended to other novel electrodes for high‐performance energy storage devices. 相似文献
7.
Growth of Au Nanoparticles on 2D Metalloporphyrinic Metal‐Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions 下载免费PDF全文
Ying Huang Meiting Zhao Shikui Han Zhuangchai Lai Jian Yang Chaoliang Tan Qinglang Ma Qipeng Lu Junze Chen Xiao Zhang Zhicheng Zhang Bing Li Bo Chen Yun Zong Hua Zhang 《Advanced materials (Deerfield Beach, Fla.)》2017,29(32)
Inspired by the multiple functions of natural multienzyme systems, a new kind of hybrid nanosheet is designed and synthesized, i.e., ultrasmall Au nanoparticles (NPs) grown on 2D metalloporphyrinic metal‐organic framework (MOF) nanosheets. Since 2D metalloporphyrinic MOF nanosheets can act as the peroxidase mimics and Au NPs can serve as artificial glucose oxidase, the hybrid nanosheets are used to mimic the natural enzymes and catalyze the cascade reactions. Furthermore, the synthesized hybrid nanosheets are used to detect biomolecules, such as glucose. This study paves a new avenue to design nanomaterial‐based biomimetic catalysts with multiple complex functions. 相似文献
8.
Yan Liu Yuanlin Zheng Zhen Chen Yuling Qin Rong Guo 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(12)
Nanozymes provide new opportunities for facilitating next generation artificial enzyme cascade platforms. However, the fabrication of high‐performance integrated artificial enzyme cascade (IAEC) bioplatforms based on nanozymes remains a great challenge. A facile and effective self‐assembly strategy for constructing an IAEC system based on an inorganic/protein hybrid nanozyme, β‐casein‐BiPt nanochain@GO (CA‐BiPtNC@GO) nanohybrid with unique physicochemical surface properties and hierarchical structures, is introduced here. Due to the synergetic effect of the protein, GO, and Bi3+, the hybrid acts as highly adaptable building blocks to immobilize natural enzymes directly and noncovalently without the loss of enzyme activity. Simultaneously, the CA‐BiPtNC@GO nanohybrid exhibits outstanding peroxidase‐mimicking activity and works well with natural oxidases, resulting in prominent activity in catalyzing cascade reactions. As a result, the proposed IAEC bioplatform exhibits excellent sensitivity with a wide linear range of 0.5 × 10‐6 to 100 × 10‐6 m and a detection limit of 0.05 × 10‐6 m for glucose. Meticulous design of ingenious hierarchically nanostructured nanozymes with unique physicochemical surface properties can provide a facile and efficient way to immobilize and stabilize nature enzymes using self‐assembly instead of chemical processes, and fill the gap in developing robust nanozyme–triggered IAEC systems with applications in the environment, sensing, and synthetic biology. 相似文献
9.
10.
High‐Performance Shortwave‐Infrared Light‐Emitting Devices Using Core–Shell (PbS–CdS) Colloidal Quantum Dots 下载免费PDF全文
Geoffrey J. Supran Katherine W. Song Gyu Weon Hwang Raoul E. Correa Jennifer Scherer Eric A. Dauler Yasuhiro Shirasaki Moungi G. Bawendi Vladimir Bulović 《Advanced materials (Deerfield Beach, Fla.)》2015,27(8):1437-1442
11.
Jiarong Cai Changlong Hao Maozhong Sun Wei Ma Chuanlai Xu Hua Kuang 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(13)
Herein, the design of a DNA‐based chiral biosensor is described utilizing the self‐assembly of shell core–gold (Au) satellite nanostructures for the detection of mycotoxin, ochratoxin A (OTA). The assembly of core–satellite nanostructures based on OTA‐aptamer binding exhibits a strong chiral signal with an intense circular dichroism (CD) peak. The integrity of the assembly of core–satellite nanostructures is limited to some extent in the presence of different levels of OTA. Correspondingly, the chiral intensity of assembly is weakened with increasing OTA concentrations, allowing quantitative determination of the target. The developed chiral sensor shows an excellent linear relationship between the CD signal and concentrations of OTA in the range of 0.1–5 pg mL?1 with a limit of detection as low as 0.037 pg mL?1. The effectiveness of the biosensor in a sample of red wine is verified and a good recovery rate is obtained. These results suggest that the strategy has great potential for practical application. 相似文献
12.
13.
14.
15.
A Monodispersed Spherical Zr‐Based Metal–Organic Framework Catalyst,Pt/Au@Pd@UIO‐66, Comprising an Au@Pd Core–Shell Encapsulated in a UIO‐66 Center and Its Highly Selective CO2 Hydrogenation to Produce CO 下载免费PDF全文
Zhizhong Zheng Haitao Xu Zhenliang Xu Jianping Ge 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(5)
A Zr‐based metal–organic framework (MOF) catalyst, Pt/Au@Pd@UIO‐66, is assembled, where UIO‐66 is Zr6O4(OH)4(BDC)6 (BDC = 1,4‐benzenedicarboxylate). The gold nanoparticles (NPs) act as the core for the epitaxial growth of Pd shells, and the core–shell monodispersed nanosphere Au@Pd is encapsulated into UIO‐66 to control its morphology and impart nanoparticle functionality. The microporous nature of UIO‐66 assists the adsorption of Pt NPs, which in turn enhances the interaction between NPs and UIO‐66, favoring the formation of isolated and well‐dispersed Pt NP active sites. This MOF exhibits high catalytic activity and CO product selectivity for the reverse‐water–gas‐shift reaction in a fixed‐bed flow reactor. 相似文献
16.
17.
Large‐Scale Fabrication of Core–Shell Structured C/SnO2 Hollow Spheres as Anode Materials with Improved Lithium Storage Performance 下载免费PDF全文
Yong Cheng Qian Li Chunli Wang Lianshan Sun Zheng Yi Limin Wang 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(47)
Due to the high theoretical capacity as high as 1494 mAh g?1, SnO2 is considered as a potential anode material for high‐capacity lithium–ion batteries (LIBs). Therefore, the simple but effective method focused on fabrication of SnO2 is imperative. To meet this, a facile and efficient strategy to fabricate core–shell structured C/SnO2 hollow spheres by a solvothermal method is reported. Herein, the solid and hollow structure as well as the carbon content can be controlled. Very importantly, high‐yield C/SnO2 spheres can be produced by this method, which suggest potential business applications in LIBs field. Owing to the dual buffer effect of the carbon layer and hollow structures, the core–shell structured C/SnO2 hollow spheres deliver a high reversible discharge capacity of 1007 mAh g?1 at a current density of 100 mA g?1 after 300 cycles and a superior discharge capacity of 915 mAh g?1 at 500 mA g?1 after 500 cycles. Even at a high current density of 1 and 2 A g?1, the core–shell structured C/SnO2 hollow spheres electrode still exhibits excellent discharge capacity in the long life cycles. Consideration of the superior performance and high yield, the core–shell structured C/SnO2 hollow spheres are of great interest for the next‐generation LIBs. 相似文献
18.
Junli Zhang Jiecai Fu Junwei Zhang Hongbin Ma Yongmin He Fashen Li Erqing Xie Desheng Xue Haoli Zhang Yong Peng 《Small (Weinheim an der Bergstrasse, Germany)》2014,10(13):2618-2624
An alternative routine is presented by constructing a novel architecture, conductive metal/transition oxide (Co@Co3O4) core–shell three‐dimensional nano‐network (3DN) by surface oxidating Co 3DN in situ, for high‐performance electrochemical capacitors. It is found that the Co@Co3O4 core–shell 3DN consists of petal‐like nanosheets with thickness of <10 nm interconnected forming a 3D porous nanostructure, which preserves the original morphology of Co 3DN well. X‐ray photoelectron spectroscopy by polishing the specimen layer by layer reveals that the Co@Co3O4 nano‐network is core–shell‐like structure. In the application of electrochemical capacitors, the electrodes exhibit a high specific capacitance of 1049 F g?1 at scan rate of 2 mV/s with capacitance retention of ~52.05% (546 F g?1 at scan rate of 100 mV) and relative high areal mass density of 850 F g?1 at areal mass of 3.52 mg/cm2. It is believed that the good electrochemical behaviors mainly originate from its extremely high specific surface area and underneath core‐Co “conductive network”. The high specific surface area enables more electroactive sites for efficient Faradaic redox reactions and thus enhances ion and electron diffusion. The underneath core‐Co “conductive network” enables an ultrafast electron transport. 相似文献
19.
20.