首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In recent years, the memory‐type control charts—exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)—along with the adaptive and dual control‐charting structures have received considerable attention because of their excellent ability in providing an overall good detection over a range of mean‐shift sizes. These adaptive memory‐type control charts include the adaptive exponentially weighted moving average (AEWMA), dual CUSUM, and adaptive CUSUM charts. In this paper, we propose a new AEWMA chart for efficiently monitoring the process mean. The idea is to first design an unbiased estimator of the mean shift using the EWMA statistic and then adaptively update the smoothing constant of the EWMA chart. The run length profiles of the proposed AEWMA chart are computed using extensive Monte Carlo simulations. Based on a comprehensive comparative study, it turns out that the proposed AEWMA chart performs better than the existing AEWMA, adaptive CUSUM, dual CUSUM, and Shewhart‐CUSUM charts, in terms of offering more balanced protection against mean shifts of different sizes. An example is also used to explain the working of the existing and proposed control charts.  相似文献   

3.
A zero‐inflated Poisson (ZIP) process is different from a standard Poisson process in that it results in a greater number of zeros. It can be used to model defect counts in manufacturing processes with occasional occurrences of non‐conforming products. ZIP models have been developed assuming that random shocks occur independently with probability p, and the number of non‐conformities in a product subject to a random shock follows a Poisson distribution with parameter λ. In our paper, a control charting procedure using a combination of two cumulative sum (CUSUM) charts is proposed for monitoring increases in the two parameters of the ZIP process. Furthermore, we consider a single CUSUM chart for detecting simultaneous increases in the two parameters. Simulation results show that a ZIP‐Shewhart chart is insensitive to shifts in p and smaller shifts in λ in terms of the average number of observations to signal. Comparisons between the combined CUSUM method and the single CUSUM chart show that the latter's performance is worse when there are only increases in p, but better when there are only increases in λ or when both parameters increase. The combined CUSUM method, however, is much better than the single CUSUM chart when one parameter increases while the other decreases. Finally, we present a case study from the light‐emitting diode packaging industry. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been widely accepted because of their fantastic speed in identifying small‐to‐moderate unusual variations in the process parameter(s). Recently, a new CUSUM chart has been proposed that uses the EWMA statistic, called the CS‐EWMA chart, for monitoring the process variability. On similar lines, in order to further improve the detection ability of the CS‐EWMA chart, we propose a CUSUM chart using the generally weighted moving average (GWMA) statistic, named the GWMA‐CUSUM chart, for monitoring the process dispersion. Monte Carlo simulations are used to compute the run length profiles of the GWMA‐CUSUM chart. On the basis of the run length comparisons, it turns out that the GWMA‐CUSUM chart outperforms the CUSUM and CS‐EWMA charts when identifying small variations in the process variability. A simulated dataset is also used to explain the working and implementation of the CS‐EWMA and GWMA‐CUSUM charts.  相似文献   

5.
Control charts have been broadly used for monitoring the process mean and dispersion. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are memory control charts as they utilize the past information in setting up the control structure. This makes CUSUM and EWMA‐type charts good at detecting small disturbances in the process. This article proposes two new memory control charts for monitoring process dispersion, named as floating T ? S2 and floating U ? S2 control charts, respectively. The average run length (ARL) performance of the proposed charts is evaluated through a simulation study and is also compared with the CUSUM and EWMA charts for process dispersion. It is found that the proposed charts are better in detecting both positive as well as negative shifts. An additional comparison shows that the floating U ? S2 chart has slightly smaller ARLs for larger shifts, while for smaller shifts, the floating T ? S2 chart has better performance. An example is also provided which shows the application of the proposed charts on simulated datasets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Exponential CUSUM charts are used in monitoring the occurrence rate of rare events because the interarrival times of events for homogeneous Poisson processes are independent and identically distributed exponential random variables. In these applications, it is assumed that the exponential parameter, i.e. the mean, is known or has been accurately estimated. However, in practice, the in‐control mean is typically unknown and must be estimated to construct the limits for the exponential CUSUM chart. In this article, we investigate the effect of parameter estimation on the run length properties of one‐sided lower exponential CUSUM charts. In addition, analyzing conditional performance measures shows that the effect of estimation error can be significant, affecting both the in‐control average run length and the quick detection of process deterioration. We also provide recommendations regarding phase I sample sizes. This sample size must be quite large for the in‐control chart performance to be close to that for the known parameter case. Finally, we provide an industrial example to highlight the practical implications of estimation error, and to offer advice to practitioners when constructing/analyzing a phase I sample. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The zero‐inflated Poisson distribution serves as an appropriate model when there is an excessive number of zeros in the data. This phenomenon frequently occurs in count data from high‐quality processes. Usually, it is assumed that these counts exhibit serial independence, while a more realistic assumption is the existence of an autocorrelation structure between them. In this work, we study control charts for monitoring correlated Poisson counts with an excessive number of zeros. Zero‐inflation in the process is captured via appropriate integer‐valued time series models. Extensive numerical results are provided regarding the performance of the considered charts in the detection of changes in the mean of the process as well as the effects of zero‐inflation on them. Finally, a real‐data practical application is given. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
An adaptive multivariate cumulative sum (AMCUSUM) control chart has received considerable attention because of its ability to dynamically adjust the reference parameter whereby achieving a better performance over a range of mean shifts than the conventional multivariate cumulative sum (CUSUM) charts. In this paper, we introduce a progressive mean–based estimator of the process mean shift and then use it to devise new weighted AMCUSUM control charts for efficiently monitoring the process mean. These control charts are easy to design and implement in a computerized environment compared with their existing counterparts. Monte Carlo simulations are used to estimate the run‐length characteristics of the proposed control charts. The run‐length comparison results show that the weighted AMCUSUM charts perform substantially and uniformly better than the classical multivariate CUSUM and AMCUSUM charts in detecting a range of mean shifts. An example is used to illustrate the working of existing and proposed multivariate CUSUM control charts.  相似文献   

9.
Control charts are widely used for process monitoring. They show whether the variation is due to common causes or whether some of the variation is due to special causes. To detect large shifts in the process, Shewhart‐type control charts are preferred. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are generally used to detect small and moderate shifts. Shewhart‐type control charts (without additional tests) use only current information to detect special causes, whereas CUSUM and EWMA control charts also use past information. In this article, we proposed a control chart called progressive mean (PM) control chart, in which a PM is used as a plotting statistic. The proposed chart is designed such that it uses not only the current information but also the past information. Therefore, the proposed chart is a natural competitor for the classical CUSUM, the classical EWMA and some recent modifications of these two charts. The conclusion of this article is that the performance of the proposed PM chart is superior to the compared ones for small and moderate shifts, and its performance for large shifts is better (in terms of the average run length). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The CRL (Conforming Run Length) type control charts have attracted increasing interest recently for attribute Statistical Process Control (SPC). The two most promising charts of this type are identified as the CRL‐CUSUM chart and the SCRL (Sum of CRLs) chart. This article compares the operating characteristics of these two charts in a comprehensive manner. The general findings reveal that the CRL‐CUSUM chart excels the SCRL chart in detecting downward (decreasing) fraction nonconforming (p) shifts and large‐scale upward (increasing) p shifts. However, the SCRL chart is superior to the CRL‐CUSUM chart in detecting the small and moderate scale upward p shifts, especially when the normal p value is small. The information acquired in this study will provide Quality Assurance (QA) engineers with useful guidance for selecting and applying the CRL‐type control charts. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Monitoring and improving the product reliability is of main concern in a large number of multistage manufacturing processes. The process output is commonly inspected under limited load conditions, and the tensile strength of reliability‐related quality characteristic is measured. This brings about censored observations that make the direct application of traditional control charts futile. The monitoring procedure becomes aggravated when the influence of variable competing risk is pronounced during the conducted test. To deal with this critical issue, we propose a regression‐adjusted cumulative sum (CUSUM) chart to effectively monitor a quality characteristic that may be right censored because of both fixed and variable competing risks. Moreover, two exponentially weighted moving average (EWMA) control charts on the basis of conditional expected values are devised to detect decreases in the tensile mean. The comparison of the three competing monitoring schemes confirms the superiority of the regression‐adjusted CUSUM procedure. Not only is the proposed control chart applicable to manufacturing processes with the aim of monitoring reliability‐related quality variables, it is also appropriate for monitoring similar quality measurements in service operations such as survivability measures in healthcare services. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) charts are famous statistical tools, to handle special causes and to bring the process back in statistical control. Shewhart charts are useful to detect large shifts, whereas EWMA and CUSUM are more sensitive for small to moderate shifts. In this study, we propose a new control chart, named mixed CUSUM‐EWMA chart, which is used to monitor the location of a process. The performance of the proposed mixed CUSUM‐EWMA control chart is measured through the average run length, extra quadratic loss, relative average run length, and a performance comparison index study. Comparisons are made with some existing charts from the literature. An example with real data is also given for practical considerations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The conventional cumulative sum (CUSUM) chart is usually designed based on a known shift size. In usual practice, shift size is often unknown and can be assumed to vary within an interval. With such a range of shift size, the dual CUSUM (DCUSUM) chart provides more sensitivity than the CUSUM chart. In this paper, we propose dual Crosier CUSUM (DCCUSUM) charts with and without fast initial response features to efficiently monitor the infrequent changes in the mean of a normally distributed process. Monte Carlo simulations are used to compute the run length characteristics of one‐sided and two‐sided DCCUSUM charts. These run length characteristics are compared with those of the CUSUM, Crosier CUSUM, Shewhart‐CUSUM, and DCUSUM charts in terms of the integral relative average run length. It turns out that the proposed chart shows better performance when detecting a range of mean shift sizes. A real dataset is considered to illustrate the implementation of existing and proposed charts.  相似文献   

14.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The Weibull distribution can be used to effectively model many different failure mechanisms due to its inherent flexibility through the appropriate selection of a shape and a scale parameter. In this paper, we evaluate and compare the performance of three cumulative sum (CUSUM) control charts to monitor Weibull‐distributed time‐between‐event observations. The first two methods are the Weibull CUSUM chart and the exponential CUSUM (ECUSUM) chart. The latter is considered in literature to be robust to the assumption of the exponential distribution when observations have a Weibull distribution. For the third CUSUM chart included in this study, an adjustment in the design of the ECUSUM chart is used to account for the true underlying time‐between‐event distribution. This adjustment allows for the adjusted ECUSUM chart to be directly comparable to the Weibull CUSUM chart. By comparing the zero‐state average run length and average time to signal performance of the three charts, the ECUSUM chart is shown to be much less robust to departures from the exponential distribution than was previously claimed in the literature. We demonstrate the advantages of using one of the other two charts, which show surprisingly similar performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Control charts are the most popular tool of statistical process control for monitoring variety of processes. The detection ability of these control charts can be improved by introducing various transformations. In this study, we have enhanced the performance of CUSUM charts by introducing a link relative variable transformation technique. Link relative variable converts the original process variable in a form which is relative to its mean. So, the link relative represents the relative positioning of the observations. Average run length (ARL ) is used to compare our technique with the previous studies. The comparison shows the overall good detection performance of our scheme for a span of shifts in the mean. A real‐world example from the electrical engineering process is also included to demonstrate the application of proposed control chart.  相似文献   

17.
Zero‐inflated probability models are used to model count data that have an excessive number of zeros. These models are mostly useful in modeling high‐yield or health‐related processes. The zero‐inflated binomial distribution is an extension of the ordinary binomial distribution that takes into account the excess of zeros. In this paper, one‐sided cumulative sum (CUSUM)‐type control charts are proposed for monitoring increases or decreases in the parameter p of a zero‐inflated binomial process. The results of an extensive numerical study concerning the statistical design of the proposed schemes as well as their practical implementation are provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are potentially powerful process monitoring tool because of their excellent speed in detecting small to moderate shifts in the process parameters. These control charts can be further improved by integrating them with the conforming run length control chart, resulting in the synthetic CUSUM (SynCUSUM) and synthetic EWMA (SynEWMA) charts. In this paper, we enhance the detection abilities of the SynCUSUM and SynEWMA charts using the auxiliary information. With suitable assumptions, the proposed control charts encompass the existing SynCUSUM, SynEWMA, CUSUM, and EWMA charts. Extensive Monte Carlo simulations are used to study the run length profiles of the proposed control charts. It turns out that the proposed near‐optimal control charts with the auxiliary information perform uniformly and substantially better than the existing near‐optimal SynCUSUM, SynEWMA, CUSUM, and EWMA charts. The proposed and existing control charts are also illustrated with the help of an example. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
To maintain and improve the quality of the processes, control charts play an important role for reduction of variation. To detect large shifts in the process parameters, Shewhart control charts are commonly applied but for small shifts, exponentially weighted moving averages (EWMA), cumulative sum (CUSUM), double exponentially weighted moving average (DEWMA), double CUSUM, moving average (MA), double moving average (DMA), and progressive mean (PM) control charts, are used. This study proposes double progressive mean (DPM) and optimal DPM control charts to enhance the performance of the PM chart. As the proposed DPM control charts use information sequentially, hence their performance is compared with natural competitors EWMA, CUSUM, DEWMA, double CUSUM, MA, DMA, and PM control charts. Run length and its different properties are evaluated to compare the performance of the proposed charts and counterparts. Results reveal that proposed optimal DPM outperforms the other charts. An example related to voltage on fixed capacitance level is also provided to illustrate the proposed charts.  相似文献   

20.
Because of its advantages of design, performance, and effectiveness in reducing the effect of patients' prior risks, the risk‐adjusted Bernoulli cumulative sum (CUSUM) chart is widely applied to monitor clinical and surgical outcome performance. In practice, it is beneficial to obtain evidence of improved surgical performance using the lower risk‐adjusted Bernoulli CUSUM charts. However, it had been shown that the in‐control performance of the charts with constant control limits varies considerably for different patient populations. In our study, we apply the dynamic probability control limits (DPCLs) developed for the upper risk‐adjusted Bernoulli CUSUM charts to the lower and two‐sided charts and examine their in‐control performance. The simulation results demonstrate that the in‐control performance of the lower risk‐adjusted Bernoulli CUSUM charts with DPCLs can be controlled for different patient populations, because these limits are determined for each specific sequence of patients. In addition, practitioners could also run upper and lower risk‐adjusted Bernoulli CUSUM charts with DPCLs side by side simultaneously and obtain desired in‐control performance for the two‐sided chart for any particular sequence of patients for a surgeon or hospital.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号