首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lithium metal anode has attracted soaring attention as an ideal battery anode. Unfortunately, nonuniform Li nucleation results in uncontrollable growth of dendritic Li, which incurs serious safety issues and poor electrochemical performance, hindering its practical applications. Herein, this study shows that uniform Li nucleation/growth can be induced by an ultralight 3D current collector consisting of in situ nitrogen‐doped graphitic carbon foams (NGCFs) to realize suppressing dendritic Li growth at the nucleating stage. The N‐containing functional groups guide homogenous growth of Li nucleus nanoparticles and the initial Li nucleus seed layer regulates the following well‐distributed Li growth. Benefiting from such favorable Li growth behavior, superior electrochemical performance can be achieved as evidenced by the high Coulombic efficiency (≈99.6% for 300 cycles), large capacity (10 mA h cm?2, 3140 mA h g?1NGCF‐Li), and ultralong lifespan (>1200 h) together with low overpotential (<25 mV at 3 mA cm?2); even under a high current density up to 10 mA cm?2, it still displays low overpotential of 62 mV.  相似文献   

2.
Much attention is paid to metal lithium as a hopeful negative material for reversible batteries with a high specific capacity. Although applying 3D hosts can relieve the dendrite growth to some extent, gradient‐distributed lithium ion in 3D uniform hosts still induces uncontrolled lithium dendrites growth, especially at high lithium capacity and high current density. Herein, a 3D conductive carbon nanofiber framework with gradient‐distributed ZnO particles as nucleation seeds (G‐CNF) to regulate lithium deposition is proposed. Based on such a unique structure, the G‐CNF electrode exhibits a high average Coulombic efficiency (CE) of 98.1% for 700 cycles at 0.5 mA cm?2. Even at 5 mA cm?2, the G‐CNF electrode performs a stable cycling process and high CE of 96.0% for over 200 cycles. When the lithium‐deposited G‐CNF (G‐CNF‐Li) anode is applied in a full cell with a commercial LiFePO4 cathode, it exhibits a stable capacity of 115 mAh g?1 and high retention of 95.7% after 300 cycles. Through inducing the gradient‐distributed nucleation seeds to counter the existing Li‐ion concentration polarization, a uniform and stable lithium deposition process in the 3D host is achieved even under the condition of high current density.  相似文献   

3.
Although metallic lithium is an extremely promising anode for lithium‐based batteries due to its high theoretical capacity, the uncontrollable growth of lithium dendrites, in particular under deep stripping and plating, have stagnated its application. It is demonstrated that parallelly aligned MXene (Ti3C2Tx ) layers enable the efficient guiding of lithium nucleation and growth on the surface of 2D MXene nanosheets, giving rise to horizontal‐growth lithium anodes. Moreover, the inherent fluorine terminations in MXene afford a uniform and durable solid electrolyte interface with lithium fluoride at the anode/electrolyte interface, efficiently regulating electromigration of lithium ions. Thus, a dendrite‐free lithium anode with a long cycle life up to 900 h and excellent deep stripping–plating capabilities up to 35 mAh cm?2 is achieved, which can further serve as an anode for a lithium metal battery, exhibiting high cycle stability up to 1000 cycles.  相似文献   

4.
Polymer‐based electrolytes have attracted ever‐increasing attention for all‐solid‐state lithium (Li) metal batteries due to their ionic conductivity, flexibility, and easy assembling into batteries, and are expected to overcome safety issues by replacing flammable liquid electrolytes. However, it is still a critical challenge to effectively block Li dendrite growth and improve the long‐term cycling stability of all‐solid‐state batteries with polymer electrolytes. Here, the interface between novel poly(vinylidene difluoride) (PVDF)‐based solid electrolytes and the Li anode is explored via systematical experiments in combination with first‐principles calculations, and it is found that an in situ formed nanoscale interface layer with a stable and uniform mosaic structure can suppress Li dendrite growth. Unlike the typical short‐circuiting that often occurs in most studied poly(ethylene oxide) systems, this interface layer in the PVDF‐based system causes an open‐circuiting feature at high current density and thus avoids the risk of over‐current. The effective self‐suppression of the Li dendrite observed in the PVDF–LiN(SO2F)2 (LiFSI) system enables over 2000 h cycling of repeated Li plating–stripping at 0.1 mA cm?2 and excellent cycling performance in an all‐solid‐state LiCoO2||Li cell with almost no capacity fade after 200 cycles at 0.15 mA cm?2 at 25 °C. These findings will promote the development of safe all‐solid‐state Li metal batteries.  相似文献   

5.
Although lithium metal is the best anode for lithium‐based batteries, the uncontrollable lithium dendrites especially under deep stripping and plating states hamper its practical applications. Here, a dendrite‐free lithium anode is developed based on vertically oriented lithium–copper–lithium arrays, which can be facilely produced via traditional rolling or repeated stacking approaches. Such vertically oriented arrays not only enable both the lithium‐ion flux and the electric field to be regulated, but also can act as a “dam” to guide the regular plating of lithium, thus efficiently buffering the volume change of the lithium anode upon cycling. As a consequence, the vertically oriented anode exhibits an excellent deep stripping and plating capability upto 50 mAh cm?2, high rate capabilities (20 mA cm?2), and long cycle life (2000 h). Based on this anode, a full lithium battery with a LiCoO2 cathode delivers a good cycle life, holding great potential for practical lithium‐metal batteries with high energy densities.  相似文献   

6.
Preventing the aggregation of nanosized electrode materials is a key point to fully utilize the advantage of the high capacity. In this work, a facile and low‐cost surface solvation treatment is developed to synthesize Fe2VO4 hierarchical porous microparticles, which efficiently prevents the aggregation of the Fe2VO4 primary nanoparticles. The reaction between alcohol molecules and surface hydroxy groups is confirmed by density functional theory calculations and Fourier transform infrared spectroscopy. The electrochemical mechanism of Fe2VO4 as lithium‐ion battery anode is characterized by in situ X‐ray diffraction for the first time. This electrode material is capable of delivering a high reversible discharge capacity of 799 mA h g?1 at 0.5 A g?1 with a high initial coulombic efficiency of 79%, and the capacity retention is 78% after 500 cycles. Moreover, a remarkable reversible discharge capacity of 679 mA h g?1 is achieved at 5 A g?1. Furthermore, when tested as sodium‐ion battery anode, a high reversible capacity of 382 mA h g?1 can be delivered at the current density of 1 A g?1, which still retains at 229 mA h g?1 after 1000 cycles. The superior electrochemical performance makes it a potential anode material for high‐rate and long‐life lithium/sodium‐ion batteries.  相似文献   

7.
Lithium metal is considered as the most promising anode material due to its high theoretical specific capacity and the low electrochemical reduction potential. However, severe dendrite problems have to be addressed for fabricating stable and rechargeable batteries (e.g., lithium–iodine batteries). To fabricate a high‐performance lithium–iodine (Li–I2) battery, a 3D stable lithium metal anode is prepared by loading of molten lithium on carbon cloth doped with nitrogen and phosphorous. Experimental observations and theoretical calculation reveal that the N,P codoping greatly improves the lithiophilicity of the carbon cloth, which not only enables the uniform loading of molten lithium but also facilitates reversible lithium stripping and plating. Dendrites formation can thus be significantly suppressed at a 3D lithium electrode, leading to stable voltage profiles over 600 h at a current density of 3 mA cm?2. A fuel cell with such an electrode and a lithium–iodine cathode shows impressive long‐term stability with a capacity retention of around 100% over 4000 cycles and enhanced high‐rate capability. These results demonstrate the promising applications of 3D stable lithium metal anodes in next‐generation rechargeable batteries.  相似文献   

8.
Notorious lithium dendrite causes severe capacity fade and harsh safety issues of lithium metal batteries, which hinder the practical applications of lithium metal electrodes in higher energy rechargeable batteries. Here, a kind of 3D‐cross‐linked composite network is successfully employed as a flexible‐rigid coupling protective layer on a lithium metal electrode. During the plating/stripping process, the composite protective layer would enable uniform distribution of lithium ions in the adjacent regions of the lithium electrode, resulting in a dendrite‐free deposition at a current density of 2 mA cm?2. The LiNi0.5Mn1.5O4‐based lithium metal battery presents an excellent cycling stability at a voltage range of 3.5–5.0 V with the induction of 3D‐cross‐linked composite protective layer. From an industrial field application of view, thin lithium metal electrodes (40 µm, with 4 times excess lithium) can be used in LiNi0.5Mn1.5O4 (with industrially significant loading of 18 mg cm?2 and 2.6 mAh cm?2)‐based lithium metal batteries, which reveals a promising opportunity for practical applicability in high energy lithium metal batteries.  相似文献   

9.
Lithium (Li) metal anodes have attracted much interest recently for high‐energy battery applications. However, low coulombic efficiency, infinite volume change, and severe dendrite formation limit their reliable implementation over a wide range. Here, an outstanding stability for a Li metal anode is revealed by designing a highly porous and hollow Li foam. This unique structure is capable of tackling many Li metal problems simultaneously: first, it assures uniform electrolyte distribution over the inner and outer electrode's surface; second, it reduces the local current density by providing a larger electroactive surface area; third, it can accommodate volume expansion and dissipate heat efficiently. Moreover, the structure shows superior stability compared to fully Li covered foam with low porosity, and bulky Li foil electrode counterparts. This Li foam exhibits small overpotential (≈25 mV at 4 mA cm?2) and high cycling stability for 160 cycles at 4 mA cm?2. Furthermore, when assembled, the porous Li metal as the anode with LiFePO4 as the cathode for a full cell, the battery has a high‐rate performance of 138 mAh g?1 at 0.2 C. The beneficial structure of the Li hollow foam is further studied through density functional theory simulations, which confirms that the porous structure has better charge mobility and more uniform Li deposition.  相似文献   

10.
Metallic lithium (Li) is a promising anode material for next‐generation rechargeable batteries. However, the dendrite growth of Li and repeated formation of solid electrolyte interface during Li plating and stripping result in low Coulombic efficiency, internal short circuits, and capacity decay, hampering its practical application. In the development of stable Li metal anode, the current collector is recognized as a critical component to regulate Li plating. In this work, a lithiophilic Cu‐CuO‐Ni hybrid structure is synthesized as a current collector for Li metal anodes. The low overpotential of CuO for Li nucleation and the uniform Li+ ion flux induced by the formation of Cu nanowire arrays enable effective suppression of the growth of Li dendrites. Moreover, the surface Cu layer can act as a protective layer to enhance structural durability of the hybrid structure in long‐term running. As a result, the Cu‐CuO‐Ni hybrid structure achieves a Coulombic efficiency above 95% for more than 250 cycles at a current density of 1 mA cm?2 and 580 h (290 cycles) stable repeated Li plating and stripping in a symmetric cell.  相似文献   

11.
The pursuit for high‐energy‐density batteries has inspired the resurgence of metallic lithium (Li) as a promising anode, yet its practical viability is restricted by the uncontrollable Li dendrite growth and huge volume changes during repeated cycling. Herein, a new 3D framework configured with Mo2N‐mofidied carbon nanofiber (CNF) architecture is established as a Li host via a facile fabrication method. The lithiophilic Mo2N acts as a homogeneously pre‐planted seed with ultralow Li nucleation overpotential, thus spatially guiding a uniform Li nucleation and deposition in the matrix. The conductive CNF skeleton effectively homogenizes the current distribution and Li‐ion flux, further suppressing Li‐dendrite formation. As a result, the 3D hybrid Mo2N@CNF structure facilitates a dendrite‐free morphology with greatly alleviated volume expansion, delivering a significantly improved Coulombic efficiency of ≈99.2% over 150 cycles at 4 mA cm?2. Symmetric cells with Mo2N@CNF substrates stably operate over 1500 h at 6 mA cm?2 for 6 mA h cm?2. Furthermore, full cells paired with LiNi0.8Co0.1Mn0.1O2 (NMC811) cathodes in conventional carbonate electrolytes achieve a remarkable capacity retention of 90% over 150 cycles. This work sheds new light on the facile design of 3D lithiophilic hosts for dendrite‐free lithium‐metal anodes.  相似文献   

12.
Tin dioxide (SnO2) has attracted much attention in lithium‐ion batteries (LIBs) due to its abundant source, low cost, and high theoretical capacity. However, the large volume variation, irreversible conversion reaction limit its further practical application in next‐generation LIBs. Here, a novel solvent‐free approach to construct uniform metal–organic framework (MOF) shell‐derived carbon confined SnO2/Co (SnO2/Co@C) nanocubes via a two‐step heat treatment is developed. In particular, MOF‐coated CoSnO3 hollow nanocubes are for the first time synthesized as the intermediate product by an extremely simple thermal solid‐phase reaction, which is further developed as a general strategy to successfully obtain other uniform MOF‐coated metal oxides. The as‐synthesized SnO2/Co@C nanocubes, when tested as LIB anodes, exhibit a highly reversible discharge capacity of 800 mAh g?1 after 100 cycles at 200 mA g?1 and excellent cycling stability with a retained capacity of 400 mAh g?1 after 1800 cycles at 5 A g?1. The experimental analyses demonstrate that these excellent performances are mainly ascribed to the delicate structure and a synergistic effect between Co and SnO2. This facile synthetic approach will greatly contribute to the development of functional metal oxide‐based and MOF‐assisted nanostructures in many frontier applications.  相似文献   

13.
γ‐Graphyne is a new nanostructured carbon material with large theoretical Li+ storage due to its unique large conjugate rings, which makes it a potential anode for high‐capacity lithium‐ion batteries (LIBs). In this work, γ‐graphyne‐based high‐capacity LIBs are demonstrated experimentally. γ‐Graphyne is synthesized through mechanochemical and calcination processes by using CaC2 and C6Br6. Brunauer–Emmett–Teller, atomic force microscopy, X‐ray photoelectron spectroscopy, solid‐state 13C NMR and Raman spectra are conducted to confirm its morphology and chemical structure. The sample presents 2D mesoporous structure and is exactly composed of sp and sp2‐hybridized carbon atoms as the γ‐graphyne structure. The electrode shows high Li+ storage (1104.5 mAh g?1 at 100 mA g?1) and rate capability (435.1 mAh g?1 at 5 A g?1). The capacity retention can be up to 948.6 (200 mA g?1 for 350 cycles) and 730.4 mAh g?1 (1 A g?1 for 600 cycles), respectively. These excellent electrochemical performances are ascribed to the mesoporous architecture, large conjugate rings, enlarged interplanar distance, and high structural integrity for fast Li+ diffusion and improved cycling stability in γ‐graphyne. This work provides an environmentally benign and cost‐effective mechanochemical method to synthesize γ‐graphyne and demonstrates its superior Li+ storage experimentally.  相似文献   

14.
Suppressing the dendrite formation and managing the volume change of lithium (Li) metal anode have been global challenges in the lithium batteries community. Herein, a duplex copper (Cu) foil with an ant‐nest‐like network and a dense substrate is reported for an ultrastable Li metal anode. The duplex Cu is fabricated by sulfurization of thick Cu foil with a subsequent skeleton self‐welding procedure. Uniform Li deposition is achieved by the 3D interconnected architecture and lithiophilic surface of self‐welded Cu skeleton. The sufficient space in the porous layer enables a large areal capacity for Li and significantly improves the electrode–electrolyte interface. Simulations reveal that the structure allows proper electric field penetration into the connected tunnels. The assembled Li anodes exhibit high coulombic efficiency (97.3% over 300 cycles) and long lifespan (>880 h) at a current density of 1 mA cm?2 with a capacity of 1 mAh cm?2. Stable and deep cycling can be maintained up to 50 times at a high capacity of 10 mAh cm?2.  相似文献   

15.
An artificial lithium‐nitrate (LiNO3)‐rich layer (LN‐RL) is developed to address dendritic lithium (Li) growth by a fusing–infusing strategy, in which LiNO3 is loaded into stainless steel mesh and a Li‐metal anode (LN‐RL@Li) is obtained by casting this LN‐RL onto Li foil. The LN‐RL enables fast Li deposition kinetics in carbonates and endows LN‐RL@Li with excellent cycleability. The underneath mechanism on the contribution of LN‐RL is uncovered by detailed characterizations combining with theoretical simulations. The LN‐RL promotes the desolvation and capacitive adsorption of Li ions and induces in‐plane Li growth along the edges of preplated Li with planar morphology. The improved cycleability of LN‐RL(@Li) is demonstrated by Li∥Cu cell that presents a coulombic efficiency of 97.2% after 280 cycles and Li∥Li cell that proceeds over 1000 h at 0.5 mA cm?2 in carbonates. Additionally, the Li∥LiFePO4 cell shows a capacity retention of 58% after 400 cycles at 1 C (1 C = 170 mA g?1), compared to the 35% after 180 cycles for the control. This work presents not only a promising strategy for practical applications of Li‐metal batteries, but also a new understanding on the role of nitrate in Li plating/stripping kinetics.  相似文献   

16.
For its high theoretical capacity and low redox potential, Li metal is considered to be one of the most promising anode materials for next‐generation batteries. However, practical application of a Li‐metal anode is impeded by Li dendrites, which are generated during the cycling of Li plating/stripping, leading to safety issues. Researchers attempt to solve this problem by spatially confining the Li plating. Yet, the effective directing of Li deposition into the confined space is challenging. Here, an interlayer is constructed between a graphitic carbon nitrite layer (g‐C3N4) and carbon cloth (CC), enabling site‐directed dendrite‐free Li plating. The g‐C3N4/CC as an anode scaffold enables extraordinary cycling stability for over 1500 h with a small overpotential of ≈80 mV at 2 mA cm?2. Furthermore, prominent battery performance is also demonstrated in a full cell (Li/g‐C3N4/CC as anode and LiCoO2 as cathode) with high Coulombic efficiency of 99.4% over 300 cycles.  相似文献   

17.
The viable Li metal anodes (LMAs) are still hampered by the safety concerns resulting from fast Li dendrite growth and huge volume expansion during cycling. Herein, carbon nanofiber matrix anchored with MgZnO nanoparticles (MgZnO/CNF) is developed as a flexible triple‐gradient host for long cycling LMAs. The superlithiophilic MgZnO nanoparticles significantly increase the wettability of CNF for fast and homogeneous infusion with molten Li. The in‐built potential and lithiophilic gradients constructed after an in situ lithiation of MgZnO and CNF enable nearly zero Li nucleation overpotential and homogeneous deposition of lithium at different scales. As such, the LMAs based on MgZnO/CNF achieve long cycling life and small overpotential even at a record‐high current density of 50 mA cm?2 and a high areal capacity of 10 mAh cm?2. A full cell paring with this designed LMA and LiFePO4 exhibits a capacity retention up to 82% after 600 cycles at a high rate of 5 C. A Li‐ion capacitor also shows an impressive capacity retention of 84% at 5 A g?1 after 10 000 cycles. Such a Li@MgZnO/CNF anode is a promising candidate for Li‐metal energy storage systems, especially working under ultrahigh current density.  相似文献   

18.
High and balanced electronic and ionic transportation networks with nanoscale distribution in solid‐state cathodes are crucial to realize high‐performance all‐solid‐state lithium batteries. Using Cu2SnS3 as a model active material, such a kind of solid‐state Cu2SnS3@graphene‐Li7P3S11 nanocomposite cathodes are synthesized, where 5–10 nm Cu2SnS3 nanoparticles homogenously anchor on the graphene nanosheets, while the Li7P3S11 electrolytes uniformly coat on the surface of Cu2SnS3@graphene composite forming nanoscaled electron/ion transportation networks. The large amount of nanoscaled triple‐phase boundary in cathode ensures high power density due to high ionic/electronic conductions and long cycle life due to uniform and reduced volume change of nano‐Cu2SnS3. The Cu2SnS3@graphene‐Li7P3S11 cathode layer with 2.0 mg cm?2 loading in all‐solid‐state lithium batteries demonstrates a high reversible discharge specific capacity of 813.2 mAh g?1 at 100 mA g?1 and retains 732.0 mAh g?1 after 60 cycles, corresponding to a high energy density of 410.4 Wh kg?1 based on the total mass of Cu2SnS3@graphene‐Li7P3S11 composite based cathode. Moreover, it exhibits excellent rate capability and high‐rate cycling stability, showing reversible capacity of 363.5 mAh g?1 at 500 mA g?1 after 200 cycles. The study provides a new insight into constructing both electronic and ionic conduction networks for all‐solid‐state lithium batteries.  相似文献   

19.
Despite the recent attention for Li metal anode (LMA) with high theoretical specific capacity of ≈ 3860 mA h g?1, it suffers from not enough practical energy densities and safety concerns originating from the excessive metal load, which is essential to compensate for the loss of Li sources resulting from their poor coulombic efficiencies (CEs). Therefore, the development of high‐performance LMA is needed to realize anode‐minimized Li metal batteries (LMBs). In this study, high‐performance LMAs are produced by introducing a hierarchically nanoporous assembly (HNA) composed of functionalized onion‐like graphitic carbon building blocks, several nanometers in diameter, as a catalytic scaffold for Li‐metal storage. The HNA‐based electrodes lead to a high Li ion concentration in the nanoporous structure, showing a high CE of ≈ 99.1%, high rate capability of 12 mA cm?2, and a stable cycling behavior of more than 750 cycles. In addition, anode‐minimized LMBs are achieved using a HNA that has limited Li content ( ≈ 0.13 mg cm?2), corresponding to 6.5% of the cathode material (commercial NCM622 ( ≈ 2 mg cm?2)). The LMBs demonstrate a feasible electrochemical performance with high energy and power densities of ≈ 510 Wh kgelectrode?1 and ≈ 2760 W kgelectrode?1, respectively, for more than 100 cycles.  相似文献   

20.
The application and development of lithium metal battery are severely restricted by the uncontrolled growth of lithium dendrite and poor cycle stability. Uniform lithium deposition is the core to solve these problems, but it is difficult to be achieved on commercial Cu collectors. In this work, a simple and commercially viable strategy is utilized for large‐scale preparation of a modified planar Cu collector with lithiophilic Ag nanoparticles by a simple substitution reaction. As a result, the Li metal shows a cobblestone‐like morphology with similar size and uniform distribution rather than Li dendrites. Interestingly, a high‐quality solid electrolyte interphase layer in egg shell‐like morphology with fast ion diffusion channels is formed on the interface of the collector, exhibiting good stability with long‐term cycles. Moreover, at the current density of 1 mA cm?2 for 1 mAh cm?2, the Ag modified planar Cu collector shows an ultralow nucleation overpotential (close to 0 mV) and a stable coulombic efficiency of 98.54% for more than 600 cycles as well as long lifespan beyond 900 h in a Li|Cu‐Ag@Li cell, indicating the ability of this method to realize stable Li metal batteries. Finally, full cells paired with LiNi0.8Co0.1Mn0.1O2 show superior rate performance and stability compared with those paired with Li foil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号