首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
    
We propose an exponentially weighted moving average (EWMA) control chart for monitoring exponential distributed quality characteristics. The proposed control chart first transforms the sample data to approximate normal variables, then calculates the moving average (MA) statistic for each subgroup, and finally constructs the EWMA statistic based on the current and the previous MA statistics. The upper and the lower control limits are derived using the mean and the variance of EWMA statistics. The in‐control and the out‐of‐control average run lengths are derived and tabularized according to process shift parameters and smoothing constants. It is shown that the proposed control chart outperforms the MA control chart for all shift parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
    
An adaptive multivariate cumulative sum (AMCUSUM) control chart has received considerable attention because of its ability to dynamically adjust the reference parameter whereby achieving a better performance over a range of mean shifts than the conventional multivariate cumulative sum (CUSUM) charts. In this paper, we introduce a progressive mean–based estimator of the process mean shift and then use it to devise new weighted AMCUSUM control charts for efficiently monitoring the process mean. These control charts are easy to design and implement in a computerized environment compared with their existing counterparts. Monte Carlo simulations are used to estimate the run‐length characteristics of the proposed control charts. The run‐length comparison results show that the weighted AMCUSUM charts perform substantially and uniformly better than the classical multivariate CUSUM and AMCUSUM charts in detecting a range of mean shifts. An example is used to illustrate the working of existing and proposed multivariate CUSUM control charts.  相似文献   

4.
    
In this paper, the design of a control chart is given using a modified exponentially weighted moving average statistic under the assumption that the quality characteristic of interest follows the normal distribution. The structure of the proposed control chart is developed, and the necessary measures are derived to find the average run length for in‐control and out‐of‐control processes. The efficiency of the proposed chart is compared with two existing control charts in terms of the average run length. The results are explained with the help of industrial example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
    
We consider the quality of a process which can be characterized by a general linear profile where the random error has a contaminated normal distribution. On the basis of trimmed least squares estimation, new control charts for monitoring the coefficient parameters and/or the error variance of the profile are proposed. Simulation studies show that the proposed control charts outperform the existing competitors under such a profile. An example from manufacturing facility is used to illustrate the applicability of the proposed charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The performance of a control chart is completely characterized by its run length distribution. Quality practitioners usually do not have access to the run length distribution but rely on the average run length (ARL) to design and evaluate the performance of an exponentially weighted moving average (EWMA) control chart. This article presents a web-based tool that provides users easy access to the Phase 2 (online or monitoring phase) run length distribution for a two-sided EWMA control chart with known parameters. The web-based tool calculates the run length distribution, percentiles of the run length distribution, as well as the mean (ARL) and variance (VRL) of the run length distribution. Additional functionality of the web-based tool includes plotting the run length distribution functions, building tables of the quantiles of the run length distribution, finding the smoothing parameter (λ) for an EWMA control chart for fixed control limit that satisfies ARL, VRL or percentile performance, and finding the control chart limit (k) for an EWMA control chart that satisfies ARL, VRL, or percentile performance. This tool and these techniques enable quality practitioners to better design and evaluate EWMA control charts.  相似文献   

7.
    
Exponentially weighted moving average (EWMA) control charts are consistently used for the detection of small shifts contrary to Shewhart charts, which are commonly used for the detection of large shifts in the process. There are many interesting features of EWMA charts that have been studied for complete data in the literature. The aim of present study is to introduce and compare the double exponentially weighted moving average (DEWMA) and EWMA control charts under type‐I censoring for Poisson‐exponential distribution. The monitoring of mean level shifts using censored data is of a great interest in many applied problems. Moreover, a new idea of conditional median is introduced and further compared with the existing conditional expected values approach for monitoring the small mean level shifts. The performance of the DEWMA and EWMA charts is evaluated using the average run length, expected quadratic loss, and performance comparison index measures. The optimum sample size comparisons for the specified and unspecified parameters are also part of this study. Two applications for practical considerations are also discussed. It is observed that different censoring rates and the size of shifts significantly affect the performance of the EWMA and DEWMA charts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
    
The Conway‐Maxwell‐Poisson (COM‐Poisson) distribution is a two‐parameter generalization of the Poisson distribution, which can be used for overdispersed or underdispersed count data and also contains the geometric and Bernoulli distributions as special cases. This article presents a double exponentially weighted moving average control chart with steady‐state control limits to monitor COM‐Poisson attributes (regarded as CMP‐DEWMA chart). The performance of the proposed control chart has been evaluated in terms of the average, the median, and the standard deviation of the run‐length distribution. The CMP‐DEWMA control chart is studied not only to detect shifts in each parameter individually but also in both parameters simultaneously. The design parameters of the proposed chart are provided, and through a simulation study, it is shown that the CMP‐DEWMA chart is more effective than the EWMA chart at detecting downward shifts of the process mean. Finally, a real data set is presented to demonstrate the application of the proposed chart.  相似文献   

9.
    
We propose a new multivariate CUSUM control chart, which is based on self adaption of its reference value according to the information from current process readings, to quickly detect the multivariate process mean shifts. By specifying the minimum magnitude of the process mean shift in terms of its non‐centrality parameter, our proposed control chart can achieve an overall performance for detecting a particular range of shifts. This adaptive feature of our method is based on two EWMA operators to estimate the current process mean level and make the detection at each step be approximately optimal. Moreover, we compare our chart with the conventional multivariate CUSUM chart. The advantages of our control chart detection for range shifts over the existing charts are greatly improved. The Markovian chain method, through which the average run length can be computed, is also presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
    
In this article, we propose an exponentially weighted moving average (EWMA) control chart for monitoring the covariance matrix of a multivariate process based on the dissimilarity index of 2 matrices. The proposed control chart essentially monitors the covariance matrix by comparing the individual eigenvalues of the estimated EWMA covariance matrix with those of the estimated covariance matrix from the in‐control (IC) phase I data. It is different from the conventional EWMA charts for monitoring the covariance matrix, which are either based on comparing the sum or product or both of the eigenvalues of the estimated EWMA covariance matrix with those of the IC covariance matrix. We compare the performance of the proposed chart with that of the best existing chart under the multivariate normal process. Furthermore, to prevent the control limit of the proposed EWMA chart developed using the limited IC phase I data from having extensively excessive false alarms, we use a bootstrap resampling method to adjust the control limit to guarantee that the proposed chart has the actual IC ARL(average run length) not less than the nominal level with a certain probability. Finally, we use an example to demonstrate the applicability and implementation of the proposed EWMA chart.  相似文献   

11.
    
In this paper, we show that a recently proposed auxiliary information-based (AIB) adaptive EWMA (AE) chart is sensitive (not robust) to the changes in the mean of an auxiliary variable when monitoring the changes in the mean of a quality variable, called the AIB-AE chart. To circumvent the weakness of the AIB-AE chart, we develop a new AIB estimator for the mean of a quality variable that is slightly robust to the changes in the mean of an auxiliary variable. Based on this newly developed estimator, a new AIB EWMA (AIB-E) chart is proposed for monitoring the mean of a quality variable. The zero-state and steady-state average run-length profiles of the AIB-AE and AIB-E charts are estimated with Monte Carlo simulations. It is found that the AIB-E chart is not only slightly robust to the changes in the mean of an auxiliary variable, but it also outperforms the AIB-AE chart when detecting small shifts in the mean of a quality variable. Illustrative examples are also included in this study to demonstrate the implementation of the existing and proposed AIB charts.  相似文献   

12.
    
A progressive average chart usually triggers initial out-of-control (OC) signals more simply and quickly than other memory-type charts . In this paper, two progressive average control procedures are proposed for monitoring the coefficient of variation (CV) of a normally distributed process variable, namely, the progressive CV (PCV) and progressive resetting CV (PRCV) control charts , respectively. The implementation of the proposed charts is presented, and the necessary design parameters are provided. Through extensive numerical simulations, it is shown that the proposed PCV and PRCV charts outperform several existing control charts to detect the initial OC signals, especially for the small and moderate CV shifts, under each combination of the shift size, the sample size, and the in-control target value of the CV. In addition, the application of the proposed control charts is illustrated by a detection example for a spinning process.  相似文献   

13.
    
In real life applications, many process‐monitoring problems in statistical process control are based on attribute data resulting from quality characteristics that cannot be measured on numerical or quantitative scales. For the monitoring of such data, a new attribute control chart has been proposed in this study, namely, the Poisson progressive Mean (PPM) control chart. The performance of the PPM chart is compared with the existing charts used for the monitoring of Poisson processes such as the Shewhart c‐chart, Poisson Exponentially Weighted Moving Average chart, Poisson double Exponentially Weighted Moving Average chart and the Poisson Cumulative Sum charts. The average run length comparison indicated the superior performance of the PPM chart in terms of shift detection ability. This study will help quality practitioners to choose an efficient attribute control chart.  相似文献   

14.
    
With the weighted loss function, a new single Exponential Weighted Moving Average (EWMA) chart (WLE chart hereafter for short) is proposed to detect both mean and variance shifts simultaneously. It includes the EWMA control chart based on the semicircle statistic and weighted‐loss‐function control chart as special cases. Numerical studies show that the WLE chart is superior to the weighted‐loss‐function Cumulative Sum (CUSUM) chart when the mean and standard deviation shifts are both small, and offers at least comparable detection ability with the WLC chart in other cases. Compared with the Shiryaev–Roberts chart, the WLE chart has a better or comparable performance except for small and moderate mean shifts. Furthermore, an equivalent form of the WLE chart is developed to diagnose the source and direction of a process change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
    
The coefficient of variation (CV) is an important quality characteristic when the process variance is a function of the process mean for a production process. In this paper, we develop an auxiliary information–based (AIB) estimator for estimating the squared CV, along with its approximated mean and variance. This estimator is then used to devise new one-sided EWMA charts for monitoring the increases or decreases in the squared CV of a normal process, named the AIB-EWMA CV charts. In addition, the sensitivities of these control charts are also enhanced with the fast initial response feature. The Monte Carlo simulation method is used to compute the run length characteristics of the proposed CV charts. Based on detailed run length comparisons, it is found that the proposed AIB-EWMA CV charts are uniformly and substantially better than the existing EWMA CV charts when detecting different kinds of upward/downward shifts in the squared CV. The proposed charts are also applied to a real dataset to support the proposed theory.  相似文献   

16.
  总被引:1,自引:0,他引:1  
Control charts are demonstrated effective in monitoring not only manufacturing processes but also service processes. In service processes, many data came from a process with nonnormal distribution or unknown distribution. Hence, the commonly used Shewhart variable control charts are not suitable because they could not be properly constructed. In this article, we proposed a new mean chart on the basis of a simple statistic to monitor the shifts of the process mean. We explored the sampling properties of the new monitoring statistic and calculated the average run lengths of the proposed chart. Furthermore, an arcsine transformed exponentially weighted moving average chart was proposed because the average run lengths of this modified chart are more intuitive and reasonable than those of the mean chart. We would recommend the arcsine transformed exponentially weighted moving average chart if we were concerned with the proper values of the average run length. A numerical example of service times with skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the proposed charts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
    
Zero-inflated Poisson (ZIP) model is very useful in high-yield processes where an excessive number of zero observations exist. This model can be viewed as an extension of the standard Poisson distribution. In this paper, a one-sided generally weighted moving average (GWMA) control chart is proposed for monitoring upward shifts in the two parameters of a ZIP process (regarded as ZIP-GWMA chart). The design parameters of the proposed chart are provided, and through a simulation study, it is shown that the ZIP-GWMA performs better than the existing control charts under shifts in both parameters. Moreover, an illustrative example is presented to display the application of the proposed chart on practitioners.  相似文献   

18.
    
The maximum exponentially weighted moving average (MaxEWMA) control charts have gained considerable attention for simultaneously detecting both increases and decreases in the mean and/or dispersion of a process. In this paper, we propose a new auxiliary information‐based (AIB) MaxEWMA control chart, called the AIB‐MaxEWMA chart. The AIB‐MaxEWMA chart encompasses the existing MaxEWMA chart. Extensive Monte Carlo simulations are performed to evaluate the average run length, standard deviation of the run length, and diagnostic abilities of the AIB‐MaxEWMA chart. An extensive comparison reveals that the AIB‐MaxEWMA chart performs uniformly better than the MaxEWMA chart. An example is also used to explain the implementation and working of the AIB‐MaxEWMA chart. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
    
A multivariate Shewhart and a multivariate exponentially weighted moving average control charts are types of multivariate control charts for monitoring the mean vector. For those control charts, a multivariate normal distribution is an important assumption that is used to describe a behavior of a set of quality characteristics of interest. This research explores the sensitivity of average run lengths and standard deviation of run lengths for the multivariate Shewhart and the multivariate exponentially weighted moving average control charts when the normality assumption is incorrect.  相似文献   

20.
    
The combination of Shewhart control charts and an exponentially weighted moving average (EWMA) control charts to simultaneously monitor shifts in the mean output of a production process has proven very effective in handling both small and large shifts. To improve the sensitivity of the control chart to detect off‐target processes, we propose a combined Shewhart‐EWMA (CSEWMA) control chart for monitoring mean output using a more structured sampling technique, i.e. ranked set sampling (RSS) instead of the traditional simple random sampling. We evaluated the performance of the proposed charts in terms of different run length (RL) properties including average RL, standard deviation of the RL, and percentile of the RL. Comparisons of these charts with some existing control charts designed for monitoring small, large, or both shifts revealed that the RSS‐based CSEWMA charts are more sensitive and offer better protection against all types of shifts than other schemes considered in this study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号