首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The self‐assembly of molecularly precise nanostructures is widely expected to form the basis of future high‐speed integrated circuits, but the technologies suitable for such circuits are not well understood. In this work, DNA self‐assembly is used to create molecular logic circuits that can selectively identify specific biomolecules in solution by encoding the optical response of near‐field coupled arrangements of chromophores. The resulting circuits can detect label‐free, femtomole quantities of multiple proteins, DNA oligomers, and small fragments of RNA in solution via ensemble optical measurements. This method, which is capable of creating multiple logic‐gate–sensor pairs on a 2 × 80 × 80‐nm DNA grid, is a step toward more sophisticated nanoscale logic circuits capable of interfacing computers with biological processes.  相似文献   

2.
DNA devices have been shown to be capable of evaluating Boolean logic. Several robust designs for DNA circuits have been demonstrated. Some prior DNA‐based circuits are use‐once circuits since the gate motifs of the DNA circuits get permanently destroyed as a side effect of the computation, and hence cannot respond correctly to subsequent changes in inputs. Other DNA‐based circuits use a large reservoir of buffered gates to replace the working gates of the circuit and can be used to drive a finite number of computation cycles. In many applications of DNA circuits, the inputs are inherently asynchronous, and this necessitates that the DNA circuits be asynchronous: the output must always be correct regardless of differences in the arrival time of inputs. This paper demonstrates: 1) renewable DNA circuits, which can be manually reverted to their original state by addition of DNA strands, and 2) time‐responsive DNA circuits, where if the inputs change over time, the DNA circuit can recompute the output correctly based on the new inputs, that are manually added after the system has been reset. The properties of renewable, asynchronous, and time‐responsiveness appear to be central to molecular‐scale systems; for example, self‐regulation in cellular organisms.  相似文献   

3.
Nanomechanical devices are becoming increasingly popular due to the very diverse field of potential applications, including nanocomputing, robotics, and drug delivery. DNA is one of the most promising building materials to realize complex 3D structures at the nanoscale level. Several mechanical DNA origami structures have already been designed capable of simple operations such as a DNA box with a controllable lid, bipedal walkers, and cargo sorting robots. However, the nanomechanical properties of mechanically interlinked DNA nanostructures that are in general highly deformable have yet to be extensively experimentally evaluated. In this work, a multicomponent DNA origami‐based rotor is created and fully characterized by electron microscopy under negative stain and cryo preparations. The nanodevice is further immobilized on a microfluidic chamber and its Brownian and flow‐driven rotational behaviors are analyzed in real time by single‐molecule fluorescence microscopy. The rotation in previous DNA rotors based either on strand displacement, electric field or Brownian motion. This study is the first to attempt to manipulate the dynamics of an artificial nanodevice with fluidic flow as a natural force.  相似文献   

4.
Methods for reducing and directly controlling the speed of DNA through a nanopore are needed to enhance sensing performance for direct strand sequencing and detection/mapping of sequence‐specific features. A method is created for reducing and controlling the speed of DNA that uses two independently controllable nanopores operated with an active control logic. The pores are positioned sufficiently close to permit cocapture of a single DNA by both pores. Once cocapture occurs, control logic turns on constant competing voltages at the pores leading to a “tug‐of‐war” whereby opposing forces are applied to regions of the molecules threading through the pores. These forces exert both conformational and speed control over the cocaptured molecule, removing folds and reducing the translocation rate. When the voltages are tuned so that the electrophoretic force applied to both pores comes into balance, the life time of the tug‐of‐war state is limited purely by diffusive sliding of the DNA between the pores. A tug‐of‐war state is produced on 76.8% of molecules that are captured with a maximum two‐order of magnitude increase in average pore translocation time relative to the average time for single‐pore translocation. Moreover, the translocation slow‐down is quantified as a function of voltage tuning and it is shown that the slow‐down is well described by a first passage analysis for a 1D subdiffusive process. The ionic current of each nanopore provides an independent sensor that synchronously measures a different region of the same molecule, enabling sequential detection of physical labels, such as monostreptavidin tags. With advances in devices and control logic, future dual‐pore applications include genome mapping and enzyme‐free sequencing.  相似文献   

5.
DNA strand displacement techniques have been used to implement a broad range of information processing devices, from logic gates, to chemical reaction networks, to architectures for universal computation. Strand displacement techniques enable computational devices to be implemented in DNA without the need for additional components, allowing computation to be programmed solely in terms of nucleotide sequences. A major challenge in the design of strand displacement devices has been to enable rapid analysis of high-level designs while also supporting detailed simulations that include known forms of interference. Another challenge has been to design devices capable of sustaining precise reaction kinetics over long periods, without relying on complex experimental equipment to continually replenish depleted species over time. In this paper, we present a programming language for designing DNA strand displacement devices, which supports progressively increasing levels of molecular detail. The language allows device designs to be programmed using a common syntax and then analysed at varying levels of detail, with or without interference, without needing to modify the program. This allows a trade-off to be made between the level of molecular detail and the computational cost of analysis. We use the language to design a buffered architecture for DNA devices, capable of maintaining precise reaction kinetics for a potentially unbounded period. We test the effectiveness of buffered gates to support long-running computation by designing a DNA strand displacement system capable of sustained oscillations.  相似文献   

6.
Gold nanoparticles (AuNPs) endowed with anisotropic DNA valency are an important class of materials, as they can assemble into complex structures with a minimal number of DNA strands. However, methods to encode 3D DNA strand patterns on AuNPs with a controlled number of unique DNA strands in a predesigned spatial arrangement remain elusive. In this work, a simple one‐step method to yield such DNA‐decorated AuNPs is demonstrated, through encapsulating AuNPs into DNA minimal nanocages. The AuNP@DNA cage encapsulation complex inherits the 3D anisotropic molecular information from the DNA nanocage with enhanced structural stability. The DNA nanocage can be further functionalized and used as a building block for the self‐assembly of complex architectures, such as dimers and trimers, programmed assemblies with sequential growth DNA backbones and DNA origami.  相似文献   

7.
Nucleic acid detection with label‐free biosensors circumvents costly fluorophore functionalization steps associated with conventional assays by utilizing transducers of impressive ultimate detection limits. Despite this technological prowess, molecular recognition at a surface limits the biosensors' sensitivity, specificity, and reusability. It is therefore imperative to integrate novel molecular approaches with existing label‐free transducers to overcome those limitations. Here, we demonstrate this concept by integrating a DNA strand displacement circuit with a micron‐scale whispering gallery mode (WGM) microsphere biosensor. The integrated biosensor exhibits at least 25‐fold improved nucleic acid sensitivity, and sets a new record for label‐free microcavity biosensors by detecting 80 pM (32 fmol) of a 22nt oligomer; this improvement results from the catalytic behavior of the circuit. Furthermore, the integrated sensor exhibits extremely high specificity; single nucleotide variants yield 40‐ to 100‐fold lower signal. Finally, the same physical sensor was demonstrated to alternatingly detect 2 different nucleic acid sequences through 5 cycles of detection, showcasing both its reusability and its versatility.  相似文献   

8.
Designing correct, robust DNA devices is difficult because of the many possibilities for unwanted interference between molecules in the system. DNA strand displacement has been proposed as a design paradigm for DNA devices, and the DNA strand displacement (DSD) programming language has been developed as a means of formally programming and analysing these devices to check for unwanted interference. We demonstrate, for the first time, the use of probabilistic verification techniques to analyse the correctness, reliability and performance of DNA devices during the design phase. We use the probabilistic model checker prism, in combination with the DSD language, to design and debug DNA strand displacement components and to investigate their kinetics. We show how our techniques can be used to identify design flaws and to evaluate the merits of contrasting design decisions, even on devices comprising relatively few inputs. We then demonstrate the use of these components to construct a DNA strand displacement device for approximate majority voting. Finally, we discuss some of the challenges and possible directions for applying these methods to more complex designs.  相似文献   

9.
Electronic DNA‐biosensor with a single nucleotide resolution capability is highly desirable for personalized medicine. However, existing DNA‐biosensors, especially single nucleotide polymorphism (SNP) detection systems, have poor sensitivity and specificity and lack real‐time wireless data transmission. DNA‐tweezers with graphene field effect transistor (FET) are used for SNP detection and data are transmitted wirelessly for analysis. Picomolar sensitivity of quantitative SNP detection is achieved by observing changes in Dirac point shift and resistance change. The use of DNA‐tweezers probe with high‐quality graphene FET significantly improves analytical characteristics of SNP detection by enhancing the sensitivity more than 1000‐fold in comparison to previous work. The electrical signal resulting from resistance changes triggered by DNA strand‐displacement and related changes in the DNA geometry is recorded and transmitted remotely to personal electronics. Practical implementation of this enabling technology will provide cheaper, faster, and portable point‐of‐care molecular health status monitoring and diagnostic devices.  相似文献   

10.
Logic gates are devices that can perform logical operations by transforming a set of inputs into a predictable single detectable output. The hybridization properties, structure, and function of nucleic acids can be used to make DNA‐based logic gates. These devices are important modules in molecular computing and biosensing. The ideal logic gate system should provide a wide selection of logical operations, and be integrable in multiple copies into more complex structures. Here we show the successful construction of a small DNA‐based logic gate complex that produces fluorescent outputs corresponding to the operation of the six Boolean logic gates AND, NAND, OR, NOR, XOR, and XNOR. The logic gate complex is shown to work also when implemented in a three‐dimensional DNA origami box structure, where it controlled the position of the lid in a closed or open position. Implementation of multiple microRNA sensitive DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics.  相似文献   

11.
Toehold-mediated DNA circuits are extensively employed to construct diverse DNA nanodevices and signal amplifiers. However, operations of these circuits are slow and highly susceptive to molecular noise such as the interference from bystander DNA strands. Herein, this work investigates the effects of a series of cationic copolymers on DNA catalytic hairpin assembly, a representative toehold-mediated DNA circuit. One copolymer, poly(L-lysine)-graft-dextran, significantly enhances the reaction rate by 30-fold due to its electrostatic interaction with DNA. Moreover, the copolymer considerably alleviates the circuit's dependency on the length and GC content of toehold, thereby enhancing the robustness of circuit operation against molecular noise. The general effectiveness of poly(L-lysine)-graft-dextran is demonstrated through kinetic characterization of a DNA AND logic circuit. Therefore, use of a cationic copolymer is a versatile and efficient approach to enhance the operation rate and robustness of toehold-mediated DNA circuits, paving the way for more flexible design and broader application.  相似文献   

12.
A new platform technology is herein described with which to construct molecular logic gates by employing the hairpin-structured molecular beacon probe as a basic work unit. In this logic gate operation system, single-stranded DNA is used as the input to induce a conformational change in a molecular beacon probe through a sequence-specific interaction. The fluorescent signal resulting from the opening of the molecular beacon probe is then used as the output readout. Importantly, because the logic gates are based on DNA, thus permitting input/output homogeneity to be preserved, their wiring into multi-level circuits can be achieved by combining separately operated logic gates or by designing the DNA output of one gate as the input to the other. With this novel strategy, a complete set of two-input logic gates is successfully constructed at the molecular level, including OR, AND, XOR, INHIBIT, NOR, NAND, XNOR, and IMPLICATION. The logic gates developed herein can be reversibly operated to perform the set-reset function by applying an additional input or a removal strand. Together, these results introduce a new platform technology for logic gate operation that enables the higher-order circuits required for complex communication between various computational elements.  相似文献   

13.
14.
Biological stimuli‐responsive DNA hydrogels have attracted much attention in the field of medical engineering owing to their unique phase transitions from gel to sol through cleavage of DNA cross‐linking points in response to specific biomolecular inputs. In this paper, a new class of biological stimuli‐responsive DNA hydrogels with a dynamically programmed DNA system that relies on a DNA circuit system through cascading toehold‐mediated DNA displacement reactions is constructed, allowing the catalytic cleavage of cross‐linking points and main chains in response to an appropriate DNA input. The dynamically programmed DNA hydrogels exhibit a significant sharp phase transition from gel to sol in comparison to another DNA hydrogel showing noncatalytic cleavage of cross‐linking points due to synchronization of the catalytic cleavage of cross‐linking points and the main chains. Further, the sol–gel phase transitions of the DNA hydrogels in response to the DNA input are easily tunable by changing the cross‐linking density. Additionally, with a structure‐switching aptamer, DNA hydrogels encapsulating PEGylated gold nanoparticles can be used as enzyme‐free signal amplifiers for the colorimetric detection of adenosine 5′‐triphosphate (ATP); this detection system provides simplicity and higher sensitivity (limit of detection: 5.6 × 10?6 m at 30 min) compared to other DNA hydrogel‐based ATP detection systems.  相似文献   

15.
Novel DNA‐gated mesoporous silica nanoparticle (MSN) vehicles functionalized with disulfide‐linked acridinamine intercalators are constructed for multi‐responsive controlled release. The DNA‐gated MSN vehicles release cargo encapsulated in the MSN pores under different stimuli, including disulfide reducing agents, elevated temperature, and deoxyribonuclease I (DNase I), for codelivery of drugs and DNA/genes in different forms. Furthermore, the cascade release of encapsulated and intercalative drugs is controlled by AND logic gates in combination of dual stimuli. The ingeniously designed DNA‐gated MSN vehicles integrates multiple responses and AND logic gate operations into a single smart nanodevice not only for codelivery of drugs and DNA/genes but also for cascade release of two drugs and has promising biological applications to meet diverse requirements of controlled release.  相似文献   

16.
17.
Copying and counting are useful primitive operations for computation and construction. We have made DNA crystals that copy and crystals that count as they grow. For counting, 16 oligonucleotides assemble into four DNA Wang tiles that subsequently crystallize on a polymeric nucleating scaffold strand, arranging themselves in a binary counting pattern that could serve as a template for a molecular electronic demultiplexing circuit. Although the yield of counting crystals is low, and per-tile error rates in such crystals is roughly 10%, this work demonstrates the potential of algorithmic self-assembly to create complex nanoscale patterns of technological interest. A subset of the tiles for counting form information-bearing DNA tubes that copy bit strings from layer to layer along their length.  相似文献   

18.
Can a wide range of complex biochemical behaviour arise from repeated applications of a highly reduced class of interactions? In particular, can the range of DNA manipulations achieved by protein enzymes be simulated via simple DNA hybridization chemistry? In this work, we develop a biochemical system which we call meta-DNA (abbreviated as mDNA), based on strands of DNA as the only component molecules. Various enzymatic manipulations of these mDNA molecules are simulated via toehold-mediated DNA strand displacement reactions. We provide a formal model to describe the required properties and operations of our mDNA, and show that our proposed DNA nanostructures and hybridization reactions provide these properties and functionality. Our meta-nucleotides are designed to form flexible linear assemblies (single-stranded mDNA (ssmDNA)) analogous to single-stranded DNA. We describe various isothermal hybridization reactions that manipulate our mDNA in powerful ways analogous to DNA–DNA reactions and the action of various enzymes on DNA. These operations on mDNA include (i) hybridization of ssmDNA into a double-stranded mDNA (dsmDNA) and heat denaturation of a dsmDNA into its component ssmDNA, (ii) strand displacement of one ssmDNA by another, (iii) restriction cuts on the backbones of ssmDNA and dsmDNA, (iv) polymerization reactions that extend ssmDNA on a template to form a complete dsmDNA, (v) synthesis of mDNA sequences via mDNA polymerase chain reaction, (vi) isothermal denaturation of a dsmDNA into its component ssmDNA, and (vii) an isothermal replicator reaction that exponentially amplifies ssmDNA strands and may be modified to allow for mutations.  相似文献   

19.
Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α‐In2Se3, a semiconducting van der Waals ferroelectric material. The planar memristor based on in‐plane (IP) polarization of α‐In2Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. The integration of vertical α‐In2Se3 memristors based on out‐of‐plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.?2 and a resistance‐switching ratio of well over 103. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α‐In2Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing.  相似文献   

20.
Dynamic DNA structures, a type of DNA construct built using programmable DNA self‐assembly, have the capability to reconfigure their conformations in response to environmental stimulation. A general strategy to design dynamic DNA structures is to integrate reconfigurable elements into conventional static DNA structures that may be assembled from a variety of methods including DNA origami and DNA tiles. Commonly used reconfigurable elements range from strand displacement reactions, special structural motifs, target‐binding DNA aptamers, and base stacking components, to DNA conformational change domains, etc. Morphological changes of dynamic DNA structures may be visualized by imaging techniques or may be translated to other detectable readout signals (e.g., fluorescence). Owing to their programmable capability of recognizing environmental cues with high specificity, dynamic DNA structures embody the epitome of robust and versatile systems that hold great promise in sensing and imaging biological analytes, in delivering molecular cargos, and in building programmable systems that are able to conduct sophisticated tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号