首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient protocol for synthesis of silver nanoparticles (AgNPs) using the combination of aqueous extract of Tinospora cordifolia leaves and 5 mM silver nitrate (AgNO3) solution was developed. This study revealed that bioactive compounds present in the extract function as stabilizing and capping agent for AgNPs. Scanning electron microscope and transmission electron microscope studies confirm the structure and surface morphology of the AgNPs. The size of synthesized AgNPs was in the range of 30–50 nm having spherical morphology. The crystalline nature of NPs was defined by the X-ray diffraction pattern. The AgNPs were found to be toxic against pathogenic bacteria such as Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Staphylococcus aureus (ATCC 29213) and against plant pathogenic fungi Fusarium oxysporum (MTCC 8608) and Sclerotinia sclerotiorum (MTCC 8785). The use of AgNPs as antibacterial and antifungal agent is advantageous over other methods for control of pathogenic microorganisms, and it can be of great importance in developing novel drugs for curing many lethal diseases.  相似文献   

2.
Nanomaterials with high stability and efficient antibacterial activity are of considerable interest. The preparation of silver nanoparticles (AgNPs) on titania coatings and their effective antibacterial activity against Staphylococcus aureus ATCC 6538 were reported. Titanium dioxide (TiO2) coatings with AgNPs were prepared on Si wafers using the reactive magnetron sputtering method. The surface topography of AgNPs/TiO2 coatings imaged using scanning electron microscopy revealed that the size and surface density of AgNPs grown by the photoreduction of silver ions were dependent on the concentration of AgNO3 in the primary solution and the time of TiO2 exposure to UV illumination. Evaluation of the antimicrobial properties and surface analysis before and after the biological test of AgNPs/TiO2 coatings indicates their high antimicrobial stability and durability. Furthermore, the interdependence between the concentration of released silver and bacterial growth inhibition was demonstrated. In addition, direct contact killing and released silver-mediated killing have been proposed as a bactericidal mechanism of action of tested coatings with AgNPs.  相似文献   

3.
The emergence of drug‐resistant bacteria and easy recurrence has been challenging in the clinical treatment of skin abscesses resulting from bacterial infections (e.g., by Staphylococcus aureus (S. aureus)). Herein, an antibacterial nanoagent capable of modulating the abscess microenvironment is designed to enhance photodynamic treatment of skin abscesses, and subsequently activate the immune system to effectively prevent abscess recurrence. In the system, manganese dioxide nanoparticles (MnO2 NPs) with high catalytic reactivity toward H2O2 are modified with photosensitizer chlorine e6 (Ce6) and coated with polyethylene glycol (PEG). The obtained Ce6@MnO2‐PEG NPs, by triggering the decomposition of lesion endogenous H2O2, are able to effectively relieve the hypoxic abscess microenvironment during S. aureus infection. The light‐triggered photodynamic bacterial killing effect could thus be remarkably enhanced, resulting in effective in vivo therapy of S. aureus‐induced skin abscesses. Interestingly, a notable pathogen‐specific immunological memory effect against future infection by the same species of bacteria is elicited after such treatment, owing to the release of bacterial antigens post photodynamic therapy (PDT) together with the adjuvant‐like function of manganese ions to activate the host immune system. This work thus presents a new type of photodynamic nanoagent particularly promising for highly effective light‐triggered abscess treatment and prevention of abscess recurrence.  相似文献   

4.
An efficient and environmentally friendly method has been developed to prepare Ag nanoparticles (AgNPs) coated tea polyphenols/polystyrene (Ag-TP/PS) nanofiber membrane, which combines electrospinning and in situ reduction of [Ag(NH3)2]+ using TP as the reductant and stabilizer. In this method, TP/Pluronic/PS nanofiber membranes are fabricated by electrospinning and then immersed in the aqueous solution of [Ag(NH3)2]+. While TP is being released from TP/Pluronic/PS nanofibers, the surface of TP/Pluronic/PS nanofibers could function as reactive sites for reduction of [Ag(NH3)2]+ without any extra reagents. XRD results indicate that AgNPs thus formed are in metallic form of Ag0. SEM images show that AgNPs can be densely and uniformly coated on the surface of TP/Pluronic/PS nanofibers. The as-prepared Ag-TP/PS nanofiber membranes exhibit excellent catalytic properties for the degradation of methylene blue. Furthermore, the effect of [Ag(NH3)2]+ concentration on the morphology and catalytic activity of the membrane is investigated. In addition, the antibacterial assays reveal that Ag-TP/PS nanofiber membrane possesses extraordinary antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli microorganisms. The free-standing membrane is flexible and easy to handle, which is promising for potential applications in catalysis, antibacterial agents and water remediation fields.  相似文献   

5.
In the present study, Bipolaris maydis was used to synthesise silver nanoparticles (AgNPs). Several parameters that influence the synthesis of AgNPs such as fungus age, the concentration of Ag nitrate (AgNO3), and incubation time were explored to find the optimum synthesis condition. Furthermore, the antifungal activity of AgNPs against Exserohilum turcicum was determined by measuring inhibition zone diameter, colony formation, and conidia germination. The optimal biosynthesis system included fungus age of 7 days, 8 mM AgNO3, and an incubation time of 120 h. Under these conditions, synthesised NPs were near round, and the average particle size was about 21 nm. At the experiment, the diameter of the inhibition zone reached a maximum of 8 mM AgNO3 and 72 h. In addition, the inhibition rate of colony and conidia reached 83.39 and 100%, respectively, with 200 μg/ml AgNPs. The results offer a novel pathway for phytopathogen control and make it likely to develop new eco‐friendly antimicrobial.Inspec keywords: silver, nanoparticles, antibacterial activity, microorganisms, particle size, nanomedicine, nanofabricationOther keywords: biosynthesis, B. maydis, antifungal effect, Exserohilum turcicum, Bipolaris maydis, silver nanoparticles, fungus age, silver nitrate concentration, incubation time, inhibition zone diameter, colony formation, conidia germination, particle size, phytopathogen control, time 72 h, time 120 h, Ag  相似文献   

6.
An innovative method was developed for production of alginate hydrogel microbeads incorporated with silver nanoparticles (AgNPs) based on electrochemical synthesis followed by electrostatic extrusion. AgNPs were synthesized galvanostatically at different values of AgNO3 concentration in the initial solution (0.5–3.9 mM), current density (5–50 mA cm−2), and implementation time (0.5–10 min). Increase in all of these parameters increased the concentration of AgNPs in alginate solution and was confirmed by TEM analysis and UV–vis spectroscopy. Cyclic voltammetry studies and Fourier transform infrared spectroscopy proved the alginate to be a good capping agent for the electrochemical synthesis of silver nanoparticles, due to coordination bonding between hydroxyl and ether groups, as well as ring oxygen atoms in uronic acid residues of alginate molecules, and Ag nanoparticles. Ag/alginate colloid solution was used for production of uniform hydrogel microbeads (with diameter of 487.75 ± 16.5 μm) by electrostatic extrusion technique. UV–vis spectroscopy confirmed retention and entrapment of AgNPs in microbeads during the production process. Alginate microbeads incorporated with AgNPs are attractive as biocompatible carriers and/or efficient donors of AgNPs as active components especially for potential biomedical applications, which was demonstrated by the antibacterial activity against Staphylococcus aureus.  相似文献   

7.
Photodynamic therapy (PDT) is a promising technique for cancer therapy, providing good therapeutic efficacy with minimized side effect. However, the lack of oxygen supply in the hypoxic tumor site obviously restricts the generation of singlet oxygen (1O2), thus limiting the efficacy of PDT. So far, the strategies to improve PDT efficacy usually rely on complicated nanosystems, which require sophisticated design or complex synthetic procedure. Herein, iodine‐rich semiconducting polymer nanoparticles (SPN‐I) for enhanced PDT, using iodine‐induced intermolecular heavy‐atom effect to elevate the 1O2 generation, are designed and prepared. The nanoparticles are composed of a near‐infrared (NIR) absorbing semiconducting polymer (PCPDTBT) serving as the photosensitizer and source of fluorescence signal, and an iodine‐grafted amphiphilic diblock copolymer (PEG‐PHEMA‐I) serving as the 1O2 generation enhancer and nanocarrier. Compared with SPN composed of PEG‐b‐PPG‐b‐PEG and PCPDTBT (SPN‐P), SPN‐I can enhance the 1O2 generation by 1.5‐fold. In addition, SPN‐I have high X‐ray attenuation coefficient because of the high density of iodine in PEG‐PHEMA‐I, providing SPN‐I the ability of use with computed tomography (CT) and fluorescence dual‐modal imaging. The study thus provides a simple nanotheranostic platform composed of two components for efficient CT/fluorescence dual‐modal imaging‐guided enhanced PDT.  相似文献   

8.
Silver nanoparticles (AgNPs) have been extensively used as antibacterial agents, owing to their ease of preparation. In the present study, leaves extract of Canarium ovatum have been employed for the biosynthesis of silver nanoparticles (CO‐AgNPs). CO‐AgNPs were synthesised under very mild, eco‐friendly manner where the plant extract acted both as reducing and capping agent. These AgNPs were synthesised by taking into account several parameters, that included, time of reaction, concentration of AgNO3, amount of extract and temperature of reaction. The optimisation studies suggested efficient synthesis of CO‐AgNPs at 25°C when 1.5 mM AgNO3 was reduced with 1:20 ratio of plant extract for 40 min. Size determination studies done on dynamic light scattering and scanning electron microscope suggested of spherical shape nanoparticles of size 119.7 ± 7 nm and 50–80 nm, respectively. Further, characterisations were done by Fourier transform infrared and energy‐dispersive X‐ray spectroscopy to evaluate the functional groups and the purity of CO‐AgNPs. The antibacterial efficacy of CO‐AgNPs was determined against the bacterial strain Pseudomonas aeruginosa. As evident from disc diffusion method studies, CO‐AgNPs remarkably inhibited the growth of the tested microorganism. This study suggested that C. ovatum extract efficiently synthesises CO‐AgNPs with significant antibacterial properties and can be good candidates for therapeutics.Inspec keywords: antibacterial activity, nanoparticles, silver, nanofabrication, particle size, light scattering, scanning electron microscopy, Fourier transform infrared spectra, X‐ray chemical analysis, microorganisms, biomedical materials, nanomedicineOther keywords: antibacterial potential, silver nanoparticles, biosynthesis, Canarium ovatum leave extract, plant extract, reducing agent, capping agent, antibacterial agents, reaction time, reaction temperature, dynamic light scattering, scanning electron microscopy, spherical shape nanoparticles, Fourier transform infrared spectroscopy, functional groups, bacterial strain Pseudomonas aeruginosa, disc diffusion method, microorganism, energy‐dispersive X‐ray spectroscopy, temperature 25 degC, time 40 min, Ag  相似文献   

9.
Silver nanoparticles (AgNPs) have been biosynthesised through the extracts of Ribes khorassanicum fruits, which served as the reducing agents and capping agents. Biosynthesised AgNPs have been found to be ultraviolet–visible (UV–vis) absorption spectra since they have displayed one surface plasmon resonance peak at 438 nm, attesting the formation of spherical NPs. These particles have been characterised by UV–vis, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analysis. The formation of AgNPs at 1.0 mM concentration of AgNO3 has resulted in NPs that contained mean diameters in a range of 20–40 nm. The green‐synthesised AgNPs have demonstrated high antibacterial effect against pathogenic bacteria (i.e. Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). Biosynthesising metal NPs through plant extracts can serve as the facile and eco‐friendly alternative for chemical and/or physical methods that are utilised for large‐scale nanometal fabrication in various medical and industrial applications.Inspec keywords: X‐ray diffraction, X‐ray chemical analysis, nanofabrication, surface plasmon resonance, nanoparticles, antibacterial activity, microorganisms, scanning electron microscopy, silver, nanomedicine, visible spectra, ultraviolet spectra, transmission electron microscopy, Fourier transform infrared spectra, field emission scanning electron microscopy, biomedical materialsOther keywords: antibacterial properties, silver nanoparticles, reducing agents, capping agents, surface plasmon resonance peak, spherical NPs, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, transmission electron microscopy analysis, plant extracts, ultraviolet‐visible absorption spectra, Fourier transform infrared spectroscopy, antibacterial effect, Ribes khorassanicum fruits, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, surface plasmon resonance, AgNO3 , Ag  相似文献   

10.
Drug-resistant bacterial infection impairs tissue regeneration and is a challenging clinical problem. Metal–organic frameworks (MOFs)-based photodynamic therapy (PDT) opens up a new era for antibiotic-free infection treatment. However, the MOF-based PDT normally encounters limited photon absorbance under visible light and notorious recombination of photogenerated holes and electrons, which significantly impede their applications. Herein, a MOFs-based nanosystem (AgNPs@MOFs) with enhanced visible light response and charge carrier separation is developed by modifying MOFs with silver nanoparticles (AgNPs) to improve PDT efficiency. The AgNPs@MOFs with enhanced photodynamic performance under visible light irradiation mainly disrupt bacteria translation process and the metabolism of purine and pyrimidine. In addition, the introduction of AgNPs endows nanosystems with chemotherapy ability, which causes destructive effect on bacterial cell membrane, including membrane ATPase protein and fatty acids. AgNPs@MOFs show excellent synergistic drug-resistant bacterial killing efficiency through multiple mechanisms, which further restrain bacterial resistance. In addition, biocompatible AgNPs@MOFs pose potential tissue regeneration ability in both Methicillin–resistant Staphylococcus aureus (MRSA)-related soft and hard tissue infection. Overall, this study provides a promising perspective in the exploration of AgNPs@MOFs as nano antibacterial medicine against drug-resistant bacteria for infected tissue regeneration in the future.  相似文献   

11.
目的 以南瓜蒸煮液和AgNO3为原料,烷基糖苷(APG)为表面活性剂,以微波加热绿色制备纳米银溶胶,研究其制备工艺、性能和抑菌效果。方法 以单因子对纳米银的制备进行优化。通过紫外-可见吸收光谱(UV-vis)、透射电镜(TEM)、能量色谱(EDS)和X射线衍射(XRD)等方法对合成纳米银的特征吸收峰、形貌以及稳定性等进行分析,并考察纳米银对大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)的抑菌性能。结果 纳米银制备适宜的优化工艺条件:在南瓜蒸煮液体积为40 mL情况下,AgNO3的初始质量浓度为1.2 g/L、pH值为13、微波加热时间为60 s。经优化后,所制备的纳米银的UV-vis光谱在406 nm处出现强的特征吸收峰,EDS色谱进一步证实了纳米银的存在。纳米银为球形,平均粒径为13.4 nm,粒径小,分散性和稳定性好。抗菌试验表明,不同质量浓度的纳米银对E.coliS.aureus均有较强的抑制和杀灭效果,对E.coli的MIC值和MBC值分别为5 mg/L和10 mg/L,对S.aureus的MIC值和MBC值分别为40 mg/L和320 mg/L。结论 该AgNPs对革兰氏阴性和革兰氏阳性细菌具有抗菌能力,在食品包装中具有较好的应用前景。  相似文献   

12.
Green synthesis of silver nanoparticles (AgNPs) is an interesting issue of the nanoscience and nanotechnology due to their unique properties. In the present study, Ginkgo biloba L. leaf extract was used to synthesise AgNPs. The effects of quantity of leaves, concentration of Ag nitrate (AgNO3), reaction temperature, and pH were studied to discover the optimal synthesis system. In addition, antifungal effect of AgNPs against Setosphaeria turcica was measured through inhibition zone method. The optimal biosynthesis system contained 15 g of leaf, 8 mM AgNO3, and 80°C at pH 9.0. Under mentioned conditions, the resulting synthesised NPs were nearly spherical, with an average size of 14 nm. In tests, AgNPs synthesised at different pH resulted in different inhibition zones, diameters increased gradually at pH from 3.0 to 11.0, while antifungal effect reached maximum at 9.0. Results of this study offer a new approach for biological control plant pathogenic fungi, and it has potential application for screening novel fungistats with high efficiency and low toxicity.Inspec keywords: antibacterial activity, silver, nanoparticles, nanobiotechnology, pHOther keywords: antifungal effect, green synthesised silver nanoparticles, Setosphaeria turcica, nanoscience, nanotechnology, Ginkgo biloba L. leaf extract, reaction temperature, pH, inhibition zone method, inhibition zones, mass 15 g, temperature 80 degC, size 14 nm, Ag  相似文献   

13.
In this study, the authors report a simple and eco‐friendly method for the synthesis of silver nanoparticles (AgNPs) using Trigonella foenum‐graecum (TFG) seed extract. They explored several parameters dictating the biosynthesis of TFG‐AgNPs such as reaction time, temperature, concentration of AgNO3, and TFG extract amount. Physicochemical characterisation of TFG‐AgNPs was done on dynamic light scattering (DLS), field emission electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction and Fourier transform infrared spectroscopy. The size determination studies using DLS revealed of TFG‐AgNPs size between 95 and 110 nm. The antibacterial activity was studied against Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa and Staphylococcus aureus. The biosynthesised TFG‐AgNPs showed remarkable anticancer efficacy against skin cancer cell line, A431 and also exhibited significant antioxidant efficacy.Inspec keywords: antibacterial activity, cancer, biomedical materials, silver, nanofabrication, nanomedicine, nanoparticles, microorganisms, skin, cellular biophysics, biochemistry, light scattering, X‐ray chemical analysis, X‐ray diffraction, Fourier transform infrared spectra, particle sizeOther keywords: antibacterial potential, anticancer potential, antioxidant potential, silver nanoparticles, Trigonella foenum‐graecum seed extract, eco‐friendly method, biosynthesis, reaction time, AgNO3 concentration, TFG extract amount, physicochemical characterisation, dynamic light scattering, field emission electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, size determination, TFG‐AgNPs size, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, skin cancer cell line A431, Ag  相似文献   

14.
Highly permeable and selective, as well as plasticization‐resistant membranes are desired as promising alternatives for cost‐ and energy‐effective CO2 separation. Here, robust mixed‐matrix membranes based on an amino‐functionalized zeolitic imidazolate framework ZIF‐7 (ZIF‐7‐NH2) and crosslinked poly(ethylene oxide) rubbery polymer are successfully fabricated with filler loadings up to 36 wt%. The ZIF‐7‐NH2 materials synthesized from in situ substitution of 2‐aminobenzimidazole into the ZIF‐7 structure exhibit enlarged aperture size compared with monoligand ZIF‐7. The intrinsic separation ability for CO2/CH4 on ZIF‐7‐NH2 is remarkably enhanced as a result of improved CO2 uptake capacity and diffusion selectivity. The incorporation of ZIF‐7‐NH2 fillers simultaneously makes the neat polymer more permeable and more selective, surpassing the state‐of‐the‐art 2008 Robeson upper bound. The chelating effect between metal (zinc) nodes of fillers and ester groups of a polymer provides good bonding, enhancing the mechanical strength and plasticization resistance of the neat polymer membrane. The developed novel ZIF‐7 structure with amino‐function and the resulting nanocomposite membranes are very attractive for applications like natural‐gas sweetening or biogas purification.  相似文献   

15.
The silver nanoparticles (AgNPs) with their unique chemical and physical properties are proving as a new therapeutical agent. In the present study, the AgNPs synthesised from an aqueous extract of a macrofungus, Earliella scabrosa, were characterised by field emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis (EDX), high‐resolution transmission electron microscopy, X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and further evaluate for its in vitro antibacterial and wound healing efficacy. The mycosynthesised AgNPs exhibited the surface plasmon resonance peak at 410 nm with good stability over a period of a month. The FESEM and EDX analyses revealed the spherical‐shaped AgNPs of an average size of 20 nm and the presence of elemental Ag, respectively. The XRD pattern showed the crystalline nature of AgNPs. The FTIR spectra confirmed the conversion of Ag+ ions to AgNPs due to reduction by biomolecules of macrofungus extract. The mycosynthesised AgNPs showed effective antibacterial activity against two Gram‐positive bacteria, namely Bacillus subtilis and Staphylococcus aureus, and two Gram‐negative bacteria Escherichia coli and Pseudomonas aeruginosa. The pathogens were highly sensitive to AgNPs, whereas less sensitive to AgNO3. The mycosynthesised AgNPs showed significant wound healing potential with 68.58% of wound closure.Inspec keywords: surface plasmon resonance, wounds, X‐ray diffraction, nanoparticles, molecular biophysics, nanomedicine, antibacterial activity, biomedical materials, reduction (chemical), silver, microorganisms, X‐ray chemical analysis, nanofabrication, transmission electron microscopy, particle size, field emission scanning electron microscopy, Fourier transform infrared spectraOther keywords: high‐resolution transmission electron microscopy, healing efficacy, mycosynthesised AgNPs, spherical‐shaped AgNPs, wound healing agent, in vitro antibacterial efficacy, Earliella scabrosa, silver nanoparticles, physical properties, chemical properties, therapeutical agent, aqueous extract, macrofungus, field emission scanning electron microscopy, FESEM, energy dispersive X‐ray analysis, EDX, X‐ray diffraction, XRD, Fourier transform infrared spectroscopy, FTIR spectroscopy, surface plasmon resonance peak, crystalline nature, biomolecules, Gram‐positive bacteria, Bacillus subtilis, Staphylococcus aureus, Gram‐negative bacteria, Escherichia coli, Pseudomonas aeruginosa, pathogens, wound closure, Ag  相似文献   

16.
Prevalent research underscores efforts to engineer highly sophisticated nanovesicles that are functionalized to combat antibiotic‐resistant bacterial infections, especially those caused by methicillin‐resistant Staphylococcus aureus (MRSA), and that aid with wound healing or immunomodulation. This is especially relevant for patients who are susceptible to Staphylococcus aureus infections postoperatively. Here, antibacterial formulations are incorporated into polymeric, biocompatible vesicles called polymersomes (PsNPs) that self‐assemble via hydrophobic interactions of admixed aqueous and organic substances. Nano‐PsNPs are synthesized using a high molecular weight amphiphilic block copolymer, and are conjugated to include antimicrobial peptides (AMPs) along the peripheral hydrophilic region and silver nanoparticles (AgNPs) inside their hydrophobic corona. In vitro testing on bacterial and human cell lines indicates that finely tuned treatment concentrations of AMP and AgNPs in PsNPs synergistically inhibits the growth of MRSA without posing significant side effects, as compared with other potent treatment strategies. A ratio of silver‐to‐AMP of about 1:5.8 corresponding to ≈11.6 µg mL?1 of silver nanoparticles and 14.3 × 10?6 m of the peptide, yields complete MRSA inhibition over a 23 h time frame. This bacteriostatic activity, coupled with nominal cytotoxicity toward native human dermal fibroblast cells, extends the potential for AMP/AgNP polymersome therapies to replace antibiotics in the clinical setting.  相似文献   

17.
Development of novel wound dressing with potent antibacterial activity is crucial for wound healing and tissue regeneration. In this work, we aim to prepare silver nanoparticles (AgNPs)-doped collagen–alginate (CA–AgNPs) biocomposite, which may possess antibacterial activity and be used as wound dressing. AgNPs were synthesized using NaBH4 as reducing agent and polyvinyl pyrrolidone as stabilizing agent. The formation of the AgNPs was confirmed by ultraviolet–visible spectrophotometer and transmission electron microscopy. Then, the as-prepared AgNPs were mixed with sodium alginate and collagen to obtain CA–AgNPs biocomposite. The CA–AgNPs biocomposite was fully characterized to verify the presence of AgNPs in the biocomposite. In vitro cytotoxicity assay illustrated that the CA–AgNPs biocomposite possessed negligible cytotoxicity at low AgNPs concentration. Furthermore, the antibacterial activity of the CA–AgNPs biocomposite was assessed against Staphylococcus aureus and Escherichia coli through agar diffusion method. Inhibition zone indicated that CA–AgNPs biocomposite possessed much higher antimicrobial activity than that of CA biocomposite, which strengthened with the increase in the AgNPs contents. Taken together, our finding suggested that the CA–AgNPs biocomposite showed strong potential as wound dressing.  相似文献   

18.
Zinc‐doped copper oxide nanoparticles are synthesized and simultaneously deposited on cotton fabric using ultrasound irradiation. The optimization of the processing conditions, the specific reagent ratio, and the precursor concentration results in the formation of uniform nanoparticles with an average size of ≈30 nm. The antibacterial activity of the Zn‐doped CuO Cu0.88Zn0.12O in a colloidal suspension or deposited on the fabric is tested against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) bacteria. A substantial enhancement of 10 000 times in the antimicrobial activity of the Zn–CuO nanocomposite compared to the pure CuO and ZnO nanoparticles (NPs) is observed after 10 min exposure to the bacteria. Similar activities are observed against multidrug‐resistant bacteria (MDR), (i.e., Methicillin‐resistant S. aureus and MDR E. coli) further emphasizing the efficacy of this composite. Finally, the mechanism for this enhanced antibacterial activity is presented.  相似文献   

19.
Silver nanoparticles (AgNPs) were synthesised with hydrothermal autoclaving technique by using AgNO3 salt (silver precursor) at different concentrations (0.01, 0.1, 0.55, 1.1, 5.5, and 11 mM) and porcine skin (1% (w/v)) gelatin polymeric matrix (reducing and stabiliser agent). The reaction was performed in an autoclave at 103 kPa and 121°C and the hydrothermal autoclaving exposure time and AgNO3 molar concentration were varied at a constant porcine skin gelatin concentration. The as‐prepared AgNPs were characterised by UV–visible spectroscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The antibacterial properties of AgNPs were tested against gram‐positive and gram‐negative bacteria. Furthermore, 3‐(4,5‐dimethylthiazol‐2‐yl) 2,5‐diphenyltetrazolium bromide and 2,2‐diphenyl‐1‐picrylhydrazyl assays were used to test whether the synthesised AgNPs can be potentially applied in cancer therapy or used as an antioxidant. This approach is a promising simple route for synthesising AgNPs with a smaller average particle 10 nm diameter. Furthermore, AgNPs exhibited a good cytotoxicity activity, reducing the viability of the liver cancer cell line HepG2 with a moderate IC50; they also showed a low‐to‐fair antioxidant activity. In addition, AgNPs had a remarkable preferential antibacterial activity against gram‐positive bacteria than gram‐negative bacteria. Therefore, these fabricated AgNPs can be used as an antibacterial agent in curative and preventive health care.Inspec keywords: gelatin, silver, nanoparticles, nanocomposites, nanobiotechnology, biomedical materials, antibacterial activity, microorganisms, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, transmission electron microscopy, cancer, cellular biophysicsOther keywords: porcine skin gelatin–silver nanocomposites, cell cytotoxicity, antibacterial properties, silver nanoparticles, hydrothermal autoclaving technique, gelatin polymeric matrix, UV–visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, gram‐positive bacteria, gram‐negative bacteria, 3‐(4,5‐dimethylthiazol‐2‐yl) 2,5‐diphenyltetrazolium bromide assays, 2,2‐diphenyl‐1‐picrylhydrazyl assays, cancer therapy, antioxidant, liver cancer cell line HepG2, Ag  相似文献   

20.
In this investigation, the biological synthesis method was adopted to synthesise silver nanoparticles (AgNPs) by using the leaf extracts of Cleistanthus collinus (C. collinus). This plant has traditionally been used to remove the harmful pest from the agriculture field. Leaf extract of C. collinus was used as bioreductant on the precursor solvent of AgNO3. The synthesised AgNPs were characterised by spectroscopic method such as UV–vis spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, dynamic light scattering and microscopic method by field‐emission scanning electron microscopy analysis. The AgNPs were studied for both antibacterial and antifungal activities and found to exhibit potential antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa. The anticancer activity of AgNPs was screened against A‐431 osteosarcoma cell line by [3‐(4, 5‐dimetheylthiazol‐2)‐2, 5 diphenyl tetrazolium bromide] assay and the IC50 value was found to be 91.05 ± 1.53 μg/ml. This trend of eco‐friendly stable synthesis of AgNPs could prove a better substitute for the chemical methods and offer greater opportunity to use these nanosilvers in agricultural and biomedical sectors.Inspec keywords: bio‐inspired materials, silver, nanoparticles, nanomedicine, antibacterial activity, cancer, biomedical materials, microorganisms, nanofabrication, attenuated total reflection, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, light scattering, scanning electron microscopy, field emission electron microscopy, cellular biophysicsOther keywords: bio‐inspired synthesis, silver nanoparticles, Cleistanthus collinus, antibacterial activity, anticancer activity, leaf extracts, biological synthesis method, bioreductant, precursor solvent, UV‐visible spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, dynamic light scattering, field‐emission scanning electron microscopy, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, A‐431 osteosarcoma cell line, 3‐(4, 5‐dimetheylthiazol‐2)‐2,5 diphenyl tetrazolium bromide assay, eco‐friendly stable synthesis, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号