首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The two large‐scale shaking table tests of tall buildings on soft soils in pile group foundations are performed to capture the effect of the seismic pile‐soil‐structure interaction (PSSI) on the dynamic responses of the pile, soil, and structure. The two different model conditions are observed, including a fixed‐base structure and a structure supported by 3‐by‐3 pile group foundation in soft soil, representing the situations excluding the soil‐structure interaction (SSI) and considering the SSI, respectively. In the tests, the superstructure is a tall building with 12‐story reinforced concrete frame. The pile‐soil‐structure system rests in a shear laminar soil container, which is designed to minimize the boundary effects during shaking table tests. The two models are subjected to various intensity seismic excitations of Shanghai bedrock waves, 1995 Kobe earthquake, and 1999 Chi‐Chi earthquake events. According to the experimental and analytical results, SSI systems have longer natural periods than the fixed‐base structure. In addition, soft soil has amplification effect under smaller seismic excitations and isolation effects under larger earthquake intensities. The strain amplitude at the top of pile is large, and the strain at the middle and tip is relatively small. Whereas the contact pressure is small at the top of pile and large at the middle and tip. From the dynamic responses of the superstructure, it is found that the PSSI amplifies the peak displacements and interstory drifts of the structures supported by pile group foundations by comparing with the fixed‐base structure. Whereas the peak acceleration and interstory shear force of the structure are reduced considering seismic PSSI. The results show that the seismic SSI is not always favorable, however, it may increase certain dynamic responses of the structure. Consequently, the seismic SSI should be considered reasonably, providing insight towards the rational seismic design of buildings rested on soft soils.  相似文献   

2.
Many steel–concrete hybrid buildings have been built in China. The seismic performance of such hybrid system is much more complicated than that of steel structure or reinforced concrete (RC) structure. A steel–concrete hybrid frame‐tube super‐tall building structure with new type of shear walls to be built in a district of seismic intensity 8 in China was studied for its structural complexity and irregularity. Both model test and numerical simulation were applied to obtain the detailed knowledge of seismic performance for this structure. First, a 1/30 scaled model structure was tested on the shaking table under different levels of earthquakes. The failure process and mechanism of the model structure are presented here. Nonlinear time‐history analysis of the prototype structure was then conducted by using the software PERFORM‐3D. The dynamic characteristics, inter‐story drift ratios and energy dissipation conditions are introduced. On the basis of the comparison between the deformation demand and capacity of main structural components at individual performance level under different earthquake level, the seismic performance at the member level was also evaluated. Despite the structural complexity and code‐exceeding height, both experimental and analytical results indicate that the overall seismic performance of the structure meet the requirements of the Chinese design code. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Pile foundations are widely used to support high‐rise buildings, in which piles transmit foundation loads to soil strata with higher bearing capacity and stiffness. This process alters the dynamic characteristics of the pile–soil–structure system in seismically active areas, especially at a liquefiable site. A series of shaking table tests on liquefiable soils in pile group foundations of tall buildings were performed to evaluate the liquefaction process and dynamic responses of the pile, soil, and structure. The soil was composed of two layers: the upper layer was a clay layer and the lower layer was saturated sand. These layers were placed in a flexible container that was excited by El Centro earthquake events and Shanghai Bedrock waves at different levels. The test results indicate that the pore pressure ratio is gradually enhanced as the amplitude of the input acceleration increases. The liquefied sand has a filtering effect on the vibration with a high frequency and an amplified effect on the vibration with a low frequency. With increased excitation, contact pressure and strain amplitudes of the pile increase, whereas the peak acceleration magnification coefficient decreases. The seismic responses of a structure with pile–soil–structure interaction are generally smaller than those on a rigid foundation.  相似文献   

4.
An equivalent coupled‐two‐beam discrete model is developed for time‐domain dynamic analysis of high‐rise buildings with flexible base and carrying any number of tuned mass dampers (TMDs). The equivalent model consists of a flexural cantilever beam and a shear cantilever beam connected in parallel by a finite number of axially rigid members that allows the consideration of intermediate modes of lateral deformation. The equivalent model is applied to a shear wall–frame building located in the Valley of Mexico, where the effects of soil–structure interaction (SSI) are important. The effects of SSI and TMDs on the dynamic properties of the shear wall–frame building are shown considering four types of soil (hard rock, dense soil, stiff soil, and soft soil) and two passive damping systems: a single TMD on its top (1‐TMD) and five uniformly distributed TMDs (5‐TMD). The results showed a great effectiveness of the TMDs to reduce the lateral seismic response and along‐wind response of the shear wall–frame building for all types of soils. Generally speaking, the dynamic response increases as the flexibility of the foundation increases.  相似文献   

5.
A series of large‐scale shaking table tests are conducted on tall buildings with and without energy dissipation devices on soft soils in pile group foundations, representing pile‐soil‐structure interaction (PSSI) system and the corresponding fixed‐base situations. The superstructure is a 12‐story reinforced concrete (RC) frame. The dynamic characteristics of the test models show that the frequencies decrease and the damping ratio increase in PSSI system by comparison with the fixed‐base structures. The mode shapes of PSSI system are different from that under fixed‐base condition, and the mode shapes of structure without dampers change greater than that with energy dissipation devices under various white noises. An improved method for structural dynamic characteristics, considering the impedance function of piles, is developed to address the issue of modal parameters with PSSI effect. In addition, the structural dynamic parameters of the large‐scale shaking table tests are identified using the modification method and other regulation methods, demonstrating that the improved approach is highly accurate and effective. Subsequently, a design procedure for viscous dampers of structures with PSSI effect is presented based on the dynamic characteristics of the system. Finally, the dynamic responses of the structure with viscous dampers in the practical engineering are decreased effectively, indicating the good performance of designed viscous dampers. The numerical results also show that the damping efficiency of interstory drift is larger than the acceleration and interstory shear force. Therefore, the improved modal parameters method, validated through a series large‐scale shaking table tests, is applicable for identifying dynamic characteristics of pile‐soil‐structure with energy dissipation devices system. The design procedure of viscous dampers, proved by a reinforced concrete frame structure located on a practical Shanghai soft site, can be employed to design the viscous dampers considering seismic PSSI effect.  相似文献   

6.
Structure‐soil‐structure interaction (SSSI) phenomena under earthquake excitations are investigated in this paper. Based on the results of the shaking table test, this work presents a 3‐dimensional finite element numerical simulation method using ANSYS software. In the simulation, an equivalent linear model is assumed for soil behavior, and contact elements are adopted to consider the nonlinearity state of the interface between foundation and surrounding soil. In addition, constrained equations are added to manage the uncoordinated degrees of freedom. By comparing the results of the finite element analysis with data obtained from the shaking table test, the dynamic response of the shaking table test can be simulated properly. Finally, the dynamic response of adjacent structures considering the SSSI effect is analyzed. The results show that with increased excitation, contact pressure, strain amplitude, and pile slip increase, whereas the peak acceleration magnification coefficient decreases. These results are significant for studying the effect of SSSI on seismic responses of structures.  相似文献   

7.
支盘桩–土–高层建筑结构振动台试验的研究   总被引:4,自引:2,他引:2  
 设计和实施支盘桩–土–高层建筑结构动力相互作用体系的振动台试验,再现框架结构和桩基的震害现象。通过振动台试验,研究相互作用体系的地震响应、支盘桩对结构体系的阻抗作用和单、双跨框架结构抗震性能的差异,对该体系的试验现象、基频、阻尼比、振型、位移反应和上部结构顶层加速度反应进行了计算和分析。结果表明:相互作用对结构的动力特性和地震反应均有较大的影响,支盘桩具有较好的抗压、抗拔和抗扭曲作用;相同工况时上海人工波激励下的结构最大位移反应比El Centro波大,说明结构的破坏除与震级有关外,还与地震波的波形有关;双跨框架结构的抗震性能明显好于单跨,并与汶川地震中很多单跨教学楼倒塌的现象一致。研究结果对抗震设计和防灾减灾具有重要的研究意义。  相似文献   

8.
This paper presents an earthquake‐resistance study program of a long‐span cantilevered story building. The program consists of a shaking table test study and nonlinear seismic analysis using finite element modeling technique. A 1/30 scale model of the prototype structure was designed and manufactured and then tested via the shaking table facility. Dynamic responses of the prototype structure under different earthquake excitation loadings were simulated. Dynamic properties, acceleration, and deformation responses of the scale down model under different intensity levels of earthquake were studied. The dynamic behavior, cracking pattern, and the likely governing failure mechanism of the structure were analyzed and discussed as well. The seismic responses of the prototype building were deduced and analyzed in terms of the similitude law. Furthermore, elaborate finite element models were established, and nonlinear numerical analysis of the prototype structure was conducted. The errors in the seismic response of the structure caused by structural simplification of scale down modeling are found small, and the dynamic behavior of the structure was not altered in the earthquake excitations. This test study provides a benchmark to calibrate the finite element model and a tentative guide in seismic design of such long‐span cantilevered story buildings.  相似文献   

9.
针对工程中采用的钢梁SRC柱框架-型钢混凝土核心筒混合结构的抗震性能进行了试验研究。设计并完成了一幢17层的1∶10模型结构,并对其进行了不同地震工况下振动台试验。分析了该结构体系固有动力特性以及在不同类型、不同强度水准的地震动输入下位移、速度、加速度响应及破坏机理;研究了布置于钢筋混凝土核心筒内的型钢框架对结构整体抗侧能力及变形性能的影响。结果表明:在不同类型、不同强度的地震动作用下,该结构体系的破坏始于型钢混凝土核心筒与外部钢梁SRC柱框架连接节点处,而后向核心筒体内部连梁发展,最终扩展到核心筒体。在核心筒体混凝土局部出现严重开裂破坏后,内置的型钢框架及外部的SRC钢梁框架仍处于弹性工作状态,表明该结构体系可实现多道防线的抗震设计目的且传力途径明确,抗震性能良好。  相似文献   

10.
In most of the seismic design provision, the concept of strength reduction factor has been developed to account for inelastic behavior of structures under seismic excitations. Most recent studies considered soil–structure interaction (SSI) in inelastic response analysis are mainly based on idealized structural models of single degree‐of‐freedom (SDOF) systems. However, an SDOF system might not be able to well capture the SSI and structural response characteristics of real multiple degrees‐of‐freedom (MDOF) systems. In this paper, through a comprehensive parametric study of 21600 MDOF and its equivalent SDOF (E‐SDOF) systems subjected to an ensemble of 30 earthquake ground motions recorded on alluvium and soft soils, effects of SSI on strength reduction factor of MDOF systems have been intensively investigated. It is concluded that generally, SSI reduces the strength reduction factor of both MDOF and more intensively SDOF systems. However, depending on the number of stories, soil flexibility, aspect ratio and inelastic range of vibration, the strength reduction factor of MDOF systems could be significantly different from that of E‐SDOF systems. A new simplified equation, which is a function of fixed‐base fundamental period, ductility ratio, the number of stories, structure slenderness ratio and dimensionless frequency, is proposed to estimate strength reduction factors for MDOF soil–structure systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
高耸塔台结构地震模拟振动台试验研究及有限元分析   总被引:2,自引:0,他引:2  
对顶部两层钢框架的高耸筒体塔台结构在地震作用下的动力特性与反应,从模型振动台试验和有限元计算两方面进行了研究。对一个1∶30比例的机场控制塔台模型进行了振动台模拟地震试验,根据试验结果,通过相似关系得到原型结构在地震作用下的动力特性与反应。同时,应用结构有限元分析程序对模型及原型结构进行动力计算,并将两种结果进行比较分析。  相似文献   

12.
Damped outriggers for tall buildings draw increasingly attentions to engineers. With a shaking table test, two models of a high‐rise steel column‐tube structure are established, one with outriggers fixed to the core and hinged at the columns, whereas the other's cantilevering outriggers are connected to columns by viscous dampers. According to their dynamic properties, five earthquake waves are selected from the Ground Motion Database of Pacific Earthquake Engineering Research Center (PEER), and two artificial waves are generated by software SIMQKE_GR. Under various peak ground accelerations (PGAs), nonlinear time‐history analysis is applied to compare structural elastic seismic responses, including accelerations, inter‐story drifts, base shear force, damper's response and additional damping ratios. It is concluded that under minor earthquakes, accelerations, inter‐story drifts and base shear force of structure with damped outriggers are larger than or nearly equal to those of the one with fixed outriggers, and the viscous dampers hardly work. But as PGA increases, the contrary situation happens, and the effect of viscous dampers is enhanced as well. The additional damping ratio reaches around 4% under mega earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In equipment–structure systems, the soil–structure interaction and connection types between the equipment and structure significantly affect the seismic response. To understand this effect, in this study, the motion equation of an equipment–structure–soil system was derived, and energy balance equations for each part of the coupled system were obtained. Further, the effects of the soil on the energy response were analyzed based on the results of shaking table tests of an equipment–structure system and real‐time substructure shaking table tests of equipment–structure–soil systems with different connection types. The energy response of the equipment–structure system with a rigid ground was compared with that of the equipment–structure–soil systems. The analysis results showed that the energy response of the equipment–structure–soil system with different connections was quite different from that of the system with a rigid ground. The soil decreased the total energy input to the equipment and structure and significantly changed the time distribution characteristics of the input energy. Additionally, the soil weakened the energy consumption of the connections. Therefore, the influence of the soil should be considered in the design of equipment–structure systems with connections.  相似文献   

14.
为了分析土与结构相互作用效应(SSI)对结构控制的影响,将地基土、上部结构和调谐质量阻尼器(TMD)组合成4种结构体系,在同一地震激励下,分别对其进行振动台试验。运用土与结构动力相互作用三维有限元分析软件SASSI2000对4种结构体系分别建立模型,并对各种试验工况下的结构地震反应进行了数值模拟计算。计算中,采用三维八结点实体单元模拟结构的基础部分,每个结点有3个自由度;上部结构采用集中质量模型;采用等效线性化模型考虑土的动力非线性影响。对振动台模型试验与数值模拟结果的比较表明,两者得到的SSI效应对TMD减震控制性能的影响表现出相似的规律性,SSI效应对结构的减震控制效果有很大影响。  相似文献   

15.
以砂卵石土动力特性三轴试验为基础,结合结构与地基动力相互作用理论,利用通用有限元软件ANSYS,模拟分析了砂卵石土地基-筏板-巨型框架结构体系在地震作用下地震反应的主要规律:由于动力相互作用的影响,砂卵石土地基中相互作用体系的频率小于不考虑结构-地基相互作用的频率;基础存在平动和转动,致使相互体系与刚性地基上结构体系的顶层位移最大值和加速度有明显不同,地基土传递地震作用具有放大或减振的作用,这与地基土的性质、激励大小等因素有关,砂卵石土地基一般具有减振的作用,致使上部结构接受的地震能量较少,各层反应均较小;同时,基础的刚度对上部结构的地震反应也有明显影响.  相似文献   

16.
为研究砌体结构外套预制钢筋混凝土墙板加固技术的加固效果,并探讨在其顶部隔震加层的可行性,进行了3个相似比为1/4模型的振动台对比试验, 模型分别是加固砌体结构模型、加固后加层非隔震结构模型和加固后加层隔震结构模型。试验测试了模型结构的动力特性及其在不同地震作用下的动力响应,为了分析结构震损后的动力响应,在试验模型经历罕遇地震作用下的损伤后又继续进行不同水准地震输入试验。试验结果表明:加层非隔震结构的上部钢框架鞭稍效应非常明显;加层隔震结构有效延长了结构自振周期,增大了结构阻尼比。加层隔震结构既有效降低了下部砌体结构的地震响应又降低了上部钢框架的地震响应,其加固效果和抗震性能优越。同时,震损后加层隔震结构的隔震效果明显降低,下部砌体的加速度反应可能大于加固结构和加层非隔震结构,建议在设计时充分考虑这种不利影响。  相似文献   

17.
运用相似关系理论对某超高层框架-核心筒结构与地基基础进行了模拟地震振动台试验,以研究结构-地基基础动力相互作用对结构地震反应的影响以及柔性地基的减震效果。在试验基础上,对结构的振型和上部结构各层的最大位移进行了计算和分析,得到了结构的振动特性和动力响应。同时,还与相同加载条件的刚性地基结构模型的模拟地震振动台试验结果进行了对比。结果表明:柔性地基与上部结构相互作用改变了上部结构的振动特性和动力响应;结构的地震反应不仅与输入加速度峰值大小有关,还与输入的地震波的频谱特性有很大关系;柔性地基参与工作在地震作用强度较小时表现为对地震的放大作用,当地震作用强度达到一定大小时才会对上部结构有减震效果,而且地震作用越强,效果越好。研究结果可为超高层建筑结构设计及其与地基基础的动力相互作用的研究提供参考。  相似文献   

18.
Numerous studies have shown that the interaction between adjacent buildings can result in changes in nonlinear dynamic response of structures, damage, and performance level, depending on the dynamic specifications of structures involved and the frequency content of the input motion. To study these effects, finite element method is used for the analytical investigations, and total soil–foundation–structure system is modeled all together. For modeling purposes and in order to realize the effects of the adjacent buildings on the dynamic response, two buildings, namely, 15‐story and 30‐story tall buildings, which were separated by distances of 1/4 and 1/8 of the width of the foundation and were located on hard and soft soil profiles, were considered. It was concluded that in the case where the soil and structure's periods were near to each other, the interaction of adjacent structures on increasing nonlinear responses (displacement and interstory drift) and structural damage indexes was noticeable and therefore was not negligible. Whereas in the case where periods are distant from each other, the interaction of adjacent buildings has a decreasing effect on damage indexes and nonlinear responses and therefore was negligible. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A novel viscous damped system and its principles are proposed in the paper. It is a novel viscous damped system with multilever mechanism that can improve the energy dissipation capacity of conventional viscous dampers. In order to compare the damping effects of the novel viscous damper with that of the conventional viscous damper, a shaking table test of a three‐story steel frame structure is performed. Testing results indicate that the novel viscous damped system is more efficient. The elastic time‐history analysis of a super high‐rise frame‐core tube structure is studied under the frequently occurring earthquake. Dynamic loads take two groups of ground motions with different period characteristics into account. Main response values such as base shear, interstory drift, and acceleration factor under long‐period ground motions are apparently larger than the seismic results due to standard ground motions. Responses between the undamped structure and the damped structure with conventional viscous dampers or the latest products are compared. It is concluded that the proposed viscous damped system can perform more effectively in reducing high‐rise structural responses subject to long‐period ground motions.  相似文献   

20.
A substructure shake table test (SSTT) based on the branch mode method was performed to reveal the mechanism and rules of equipment‐adjacent structure–soil interaction (EASSI) under a seismic effect. EASSI system was divided into three substructures, namely, equipment‐single structure, foundation soil, and adjacent structure. The coupling terms of interaction among the substructures were proposed. The branch mode method was effectively applied to the SSTT by decomposing and transforming the dynamic equation of the entire system and utilizing the coupling terms of interaction for data exchange among substructures. The degree of freedom was reduced for the linear substructures. Experiments indicated that in EASSI, the presence of soil magnified the flexibility and equivalent damping of the entire system. The overall effect was presented as a reduction in the dynamic response of the system. The dynamic feedback of the equipment inhibited the dynamic response of the main structure, which intensified the rate of vibration attenuation of the system. The seismic response analysis was also performed for the system when the mass ratio and frequency ratio between the equipment and the main structure and the position of the equipment in the main structure varied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号