首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of hydrated ions through narrow pores is important for a number of processes such as the desalination and filtration of water and the conductance of ions through biological channels. Here, molecular dynamics simulations are used to systematically examine the transport of anionic drinking water contaminants (fluoride, chloride, nitrate, and nitrite) through pores ranging in effective radius from 2.8 to 6.5 Å to elucidate the role of hydration in excluding these species during nanofiltration. Bulk hydration properties (hydrated size and coordination number) are determined for comparison with the situations inside the pores. Free energy profiles for ion transport through the pores show energy barriers depend on pore size, ion type, and membrane surface charge and that the selectivity sequence can change depending on the pore size. Ion coordination numbers along the trajectory showed that partial dehydration of the transported ion is the main contribution to the energy barriers. Ion transport is greatly hindered when the effective pore radius is smaller than the hydrated radius, as the ion has to lose some associated water molecules to enter the pore. Small energy barriers are still observed when pore sizes are larger than the hydrated radius due to re‐orientation of the hydration shell or the loss of more distant water. These results demonstrate the importance of ion dehydration in transport through narrow pores, which increases the current level of mechanistic understanding of membrane‐based desalination and transport in biological channels.  相似文献   

2.
Herein, the design and synthesis of ZIF‐67 nanoparticles (NPs) with tunable size grown inside hollow carbon nanospheres (ZIF‐67@HCSs) via a space‐confined strategy is reported. HCSs are first prepared via pyrolysis of polystyrene@polypyrrole (PS@PPy) composite nanospheres. Further infiltration of 2‐methylimidazole (MI) into the HCSs (MI@HCSs) using a melting‐diffusion strategy, followed by immersing MI@HCSs into Co(NO3)2 solution through the pores and channels of HCSs results in the formation of ZIF‐67@HCSs. The as‐synthesized ZIF‐67@HCSs with tunable ZIF‐67 size is achieved by changing the amount of MI. Due to the high pore volume provided by nanoscale ZIF‐67 NPs, the as‐prepared core–shell ZIF‐67@HCSs exhibit outstanding adsorption capacity for CO2.  相似文献   

3.
The high theoretical capacity of red phosphorus (RP) makes it a promising anode material for lithium‐ion batteries. However, the large volume change of RP during charging/discharging imposes an adverse effect on the cyclability and the rate performance suffers from its low conductivity. Herein, a facile solution‐based strategy is exploited to incorporate phosphorus into the pores of zeolitic imidazole framework (ZIF‐8) derived carbon hosts under a mild temperature. With this method, the blocky RP is etched into the form of polyphosphides anions (PP, mainly P5?) so that it can easily diffuse into the pores of porous carbon hosts. Especially, the indelible crystalline surface phosphorus can be effectively avoided, which usually generates in the conventional vapor‐condensation encapsulation method. Moreover, highly‐conductive ZIF‐8 derived carbon hosts with any pore smaller than 3 nm are efficient for loading PP and these pores can alleviate the volume change well. Finally, the composite of phosphorus encapsulated into ZIF‐8 derived porous carbon exhibits a significantly improved electrochemical performance as lithium‐ion battery anode with a high capacity of 786 mAh g?1 after 100 cycles at 0.1 A g?1, a good stability within 700 cycles at 1 A g?1, and an excellent rate performance.  相似文献   

4.
Atomically thin single crystals, without grain boundaries and associated defect clusters, represent ideal systems to study and understand intrinsic defects in materials, but probing them collectively over large area remains nontrivial. In this study, the authors probe nanoscale mass transport across large‐area (≈0.2 cm2) single‐crystalline graphene membranes. A novel, polymer‐free picture frame assisted technique, coupled with a stress‐inducing nickel layer is used to transfer single crystalline graphene grown on silicon carbide substrates to flexible polycarbonate track etched supports with well‐defined cylindrical ≈200 nm pores. Diffusion‐driven flow shows selective transport of ≈0.66 nm hydrated K+ and Cl? ions over ≈1 nm sized small molecules, indicating the presence of selective sub‐nanometer to nanometer sized defects. This work presents a framework to test the barrier properties and intrinsic quality of atomically thin materials at the sub‐nanometer to nanometer scale over technologically relevant large areas, and suggests the potential use of intrinsic defects in atomically thin materials for molecular separations or desalting.  相似文献   

5.
Controllable synthesis of ultrasmall atomically ordered intermetallic nanoparticles is a challenging task, owing to the high temperature commonly required for the formation of intermetallic phases. Here, a metal–organic framework (MOF)‐confined co‐reduction strategy is developed for the preparation of sub‐2 nm intermetallic PdZn nanoparticles, by employing the well‐defined porous structures of calcinated ZIF‐8 (ZIF‐8C) and an in situ co‐reduction therein. HAADF‐STEM, HRTEM, and EDS characterizations reveal the homogeneous dispersion of these sub‐2 nm intermetallic PdZn nanoparticles within the ZIF‐8C frameworks. XRD, XPS, and EXAFS measurements further confirm the atomically ordered intermetallic phase nature of these sub‐2 nm PdZn nanoparticles. Selective hydrogenation of acetylene evaluation results show the excellent catalytic properties of the sub‐2 nm intermetallic PdZn, which result from the energetically more favorable path for acetylene hydrogenation and ethylene desorption over the ultrasmall particles than over larger‐sized intermetallic PdZn as revealed by density functional theory (DFT) calculations. Moreover, this protocol is also extendable for the preparation of sub‐2 nm intermetallic PtZn nanoparticles and is expected to provide a novel methodology in synthesizing ultrasmall atomically ordered intermetallic nanomaterials by rationally functionalizing MOFs.  相似文献   

6.
The poor mechanical strength of graphene oxide (GO) membranes, caused by the weak interlamellar interactions, poses a critical challenge for any practical application. In addition, intrinsic but large‐sized 2D channels of stacked GO membranes lead to low selectivity for small molecules. To address the mechanical strength and 2D channel size control, thiourea covalent‐linked graphene oxide framework (TU‐GOF) membranes on porous ceramics are developed through a facile hydrothermal self‐assembly synthesis. With this strategy, thiourea‐bridged GO laminates periodically through the dehydration condensation reactions via ? NH2 and/or ? SH with ? O?C? OH as well as the nucleophilic addition reactions of ? NH2 to C? O? C, leading to narrowed and structurally well‐defined 2D channels due to the small dimension of the covalent TU‐link and the deoxygenated processes. The resultant TU‐GOF/ceramic composite membranes feature excellent sieving capabilities for small species, leading to high hydrogen permselectivities and nearly complete rejections for methanol and small ions in gas, solvent, and saline water separations. Moreover, the covalent bonding formed at the GO/support and GO/GO interfaces endows the composite membrane with significantly enhanced stability.  相似文献   

7.
Water and ion transport through a heterogeneous membrane separating two electrolyte solutions at different concentrations is investigated by using molecular dynamics simulations. The membrane features pairs of oppositely charged pores with identical diameters. Simulation results indicate that the differential transport of K(+) and Cl(-) ions through the membrane pores creates an electrical potential difference across the membrane, which then induces an electroosmotic water flux. The induced electroosmosis creates an internal recirculation loop of water between adjacent pores. The implications of these new observations are discussed.  相似文献   

8.
Biological electrogenic systems use protein‐based ionic pumps to move salt ions uphill across a cell membrane to accumulate an ion concentration gradient from the equilibrium physiological environment. Toward high‐performance and robust artificial electric organs, attaining an antigradient ion transport mode by fully abiotic materials remains a great challenge. Herein, a light‐driven proton pump transport phenomenon through a Janus graphene oxide membrane (JGOM) is reported. The JGOM is fabricated by sequential deposition of graphene oxide (GO) nanosheets modified with photobase (BOH) and photoacid (HA) molecules. Upon ultraviolet light illumination, the generation of a net protonic photocurrent through the JGOM, from the HA‐GO to the BOH‐GO side, is observed. The directional proton flow can thus establish a transmembrane proton concentration gradient of up to 0.8 pH units mm?2 membrane area at a proton transport rate of 3.0 mol h?1 m?2. Against a concentration gradient, antigradient proton transport can be achieved. The working principle is explained in terms of asymmetric surface charge polarization on HA‐GO and BOH‐GO multilayers triggered by photoisomerization reactions, and the consequent intramembrane proton concentration gradient. The implementation of membrane‐scale light‐harvesting 2D nanofluidic system that mimics the charge process of the bioelectric organs makes a straightforward step toward artificial electrogenic and photosynthetic applications.  相似文献   

9.
Natural biomolecules have potential as proton‐conducting materials, in which the hydrogen‐bond networks can facilitate proton transportation. Herein, a biomolecule/metal–organic framework (MOF) approach to develop hybrid proton‐conductive membranes is reported. Single‐strand DNA molecules are introduced into DNA@ZIF‐8 membranes through a solid‐confined conversion process. The DNA‐threaded ZIF‐8 membrane exhibits high proton conductivity of 3.40 × 10?4 S cm?1 at 25 °C and the highest one ever reported of 0.17 S cm?1 at 75 °C, under 97% relatively humidity, attributed to the formed hydrogen‐bond networks between the DNA molecules and the water molecules inside the cavities of the ZIF‐8, but very low methanol permeability of 1.25 × 10?8 cm2 s?1 due to the small pore entrance of the DNA@ZIF‐8 membranes. The selectivity of the DNA@ZIF‐8 membrane is thus significantly higher than that of developed proton‐exchange membranes for fuel cells. After assembling the DNA@ZIF‐8 hybrid membrane into direct methanol fuel cells, it exhibits a power density of 9.87 mW cm?2 . This is the first MOF‐based proton‐conductivity membrane used for direct methanol fuel cells, providing bright promise for such hybrid membranes in this application.  相似文献   

10.
Potassium ion batteries (KIB) have become a compelling energy‐storage system owing to their cost effectiveness and the high abundance of potassium in comparison with lithium. However, its practical applications have been thwarted by a series of challenges, including marked volume expansion and sluggish reaction kinetics caused by the large radius of potassium ions. In line with this, the exploration of reliable anode materials affording high electrical conductivity, sufficient active sites, and structural robustness is the key. The synthesis of ZIF‐8@ZIF‐67 derived nitrogen‐doped porous carbon confined CoP polyhedron architectures (NC@CoP/NC) to function as innovative KIB anode materials is reported. Such composites enable an outstanding rate performance to harvest a capacity of ≈200 mAh g?1 at 2000 mA g?1. Additionally, a high cycling stability can be gained by maintaining a high capacity retention of 93% after 100 cycles at 100 mA g?1. Furthermore, the potassium ion storage mechanism of the NC@CoP/NC anode is systematically probed through theoretical simulations and experimental characterization. This contribution may offer an innovative and feasible route of emerging anode design toward high performance KIBs.  相似文献   

11.
Thomas Kolling 《Thin solid films》2009,517(16):4583-20122
We describe an experimental setup for investigating the transport of alkali ions through poly(p-xylylene) membranes. It consists of an ion source where a continuous beam of alkali ions is generated from a surface emitter. Via ion-optics the ions are guided to the main chamber where the interaction with the free-standing membranes of variable thickness is investigated as a function of the impact energy. For a cesium ion beam the transmission of ions exhibits a maximum at an impact energy of several hundred volts, depending on the membrane thickness. The transport of the ions most likely proceeds through pores or porosities in the membrane. At the highest impact energies employed (around 2000 eV) the transmission of electrons is observed, most likely due to collision processes causing kinetic electron emission.  相似文献   

12.
Transmembrane proteins often contain nanoscale channels through which ions and molecules can pass either passively (by diffusion) or actively (by means of forced transport). These proteins play important roles in selective mass transport and electrical signalling in many biological processes. Fluidic nanochannels that are 1-2 nm in diameter act as functional mimics of protein channels, and have been used to explore the transport of ions and molecules in confined liquids. Here we report ion transport in 2-nm-deep nanochannels fabricated by standard semiconductor manufacturing processes. Ion transport in these nanochannels is dominated by surface charge until the ion concentration exceeds 100 mM. At low concentrations, proton mobility increases by a factor of four over the bulk value, possibly due to overlapping of the hydrogen-bonding network of the two hydration layers adjacent to the hydrophilic surfaces. The mobility of K+/Na+ ions also increases as the bulk concentration decreases, although the reasons for this are not completely understood.  相似文献   

13.
Highly permeable and selective, as well as plasticization‐resistant membranes are desired as promising alternatives for cost‐ and energy‐effective CO2 separation. Here, robust mixed‐matrix membranes based on an amino‐functionalized zeolitic imidazolate framework ZIF‐7 (ZIF‐7‐NH2) and crosslinked poly(ethylene oxide) rubbery polymer are successfully fabricated with filler loadings up to 36 wt%. The ZIF‐7‐NH2 materials synthesized from in situ substitution of 2‐aminobenzimidazole into the ZIF‐7 structure exhibit enlarged aperture size compared with monoligand ZIF‐7. The intrinsic separation ability for CO2/CH4 on ZIF‐7‐NH2 is remarkably enhanced as a result of improved CO2 uptake capacity and diffusion selectivity. The incorporation of ZIF‐7‐NH2 fillers simultaneously makes the neat polymer more permeable and more selective, surpassing the state‐of‐the‐art 2008 Robeson upper bound. The chelating effect between metal (zinc) nodes of fillers and ester groups of a polymer provides good bonding, enhancing the mechanical strength and plasticization resistance of the neat polymer membrane. The developed novel ZIF‐7 structure with amino‐function and the resulting nanocomposite membranes are very attractive for applications like natural‐gas sweetening or biogas purification.  相似文献   

14.
Rechargeable potassium‐ion batteries (PIBs) have attracted tremendous attention as potential electrical energy storage systems due to the special merit of abundant resources and low cost of potassium. However, one critical barrier to achieve practical application of PIBs has been the lack of suitable electrode materials. Here, a novel flexible membrane consisting of N, P codoped carbon nanofibers decorated with MoP ultrafine nanoparticles (MoP@NPCNFs) is fabricated via a simple electrospinning method combined with the later carbonization and phosphorization process. The 3D porous CNF structure in the as‐synthesized composite can shorten the transport pathways of K‐ions and improve the conductivity of electrons. The ultrafine MoP nanoparticles can guarantee high specific capacity and the N, P co‐doping could improve wettability of electrodes to electrolytes. As expected, the free‐standing MoP@NPCNF electrode demonstrates a high capacity of 320 mAh g?1 at 100 mA g?1, a superior rate capability maintaining 220 mAh g?1 at 2 A g?1, as well as a capacity retention of more than 90% even after 200 cycles. The excellent rate performance, high reversible capacity, long‐term cycling stability, and facile synthesis routine make this hybrid membrane promising anode for potassium‐ion batteries.  相似文献   

15.
Ion channels are transmembrane proteins that regulate and maintain the ionic concentrations across the cell membrane. Modeling the atomistic-level ionic flux through these channels is crucial for the understanding of several neurological diseases and related pharmaceutical discoveries. Experimental techniques now provide information about the channel's physical structure which helps in developing realisticion transport models. Ions entering a channel follow different trajectories as they traverse the channel; each associated with a certain probability. Quantities that explain these trajectories are the translocation and return probabilities, average lifetime, and spectral density (an experimentally accessible parameter) of ion number fluctuations. Theoretical analysis of ion transport has been limited to low-resolution continuum diffusion-based or kinetic-based models. Such analytical models fail to include key factors affecting the ionic conduction. In this paper, we extend previous models by an electro-diffusion model incorporating the effects of electric field, energy barrier, and rate-limited association/dissociation of ions with surface charges inside the channel. Survival probability and spectral density are derived from the analytical model.  相似文献   

16.
Biological nanochannels control the movements of different ions through cell membranes depending on not only those channels' static inherent configurations, structures, inner surface's physicochemical properties but also their dynamic shape changes, which are required in various essential functions of life processes. Inspired by ion channels, many artificial nanochannel‐based membranes for nanofluidics and biosensing applications have been developed to regulate ionic transport behaviors by using the functional molecular modifications at the inner surface of nanochannel to achieve a stimuli‐responsive layer. Here, the concept of a dynamic nanochannel system is further developed, which is a new way to regulate ion transport in nanochannels by using the dynamic change in the curvature of channels to adjust ionic rectification in real time. The dynamic curvature nanochannel‐based membrane displays the advanced features of the anomalous effect of voltage, concentration, and ionic size for applying simultaneous control over the curvature‐tunable asymmetric and reversible ionic rectification switching properties. This dynamic approach can be used to build smart nanochannel‐based systems, which have strong implications for flexible nanofluidics, ionic rectifiers, and power generators.  相似文献   

17.
Hybrid nanostructures composed of metal nanoparticles and metal‐organic frameworks (MOFs) have recently received increasing attention toward various applications due to the combination of optical and catalytic properties of nanometals with the large internal surface area, tunable crystal porosity and unique chemical properties of MOFs. Encapsulation of metal nanoparticles of well‐defined shapes into porous MOFs in a core–shell type configuration can thus lead to enhanced stability and selectivity in applications such as sensing or catalysis. In this study, the encapsulation of single noble metal nanoparticles with arbitrary shapes within zeolitic imidazolate‐based metal organic frameworks (ZIF‐8) is demonstrated. The synthetic strategy is based on the enhanced interaction between ZIF‐8 nanocrystals and metal nanoparticle surfaces covered by quaternary ammonium surfactants. High resolution electron microscopy and tomography confirm a complete core–shell morphology. Such a well‐defined morphology allowed us to study the transport of guest molecules through the ZIF‐8 porous shell by means of surface‐enhanced Raman scattering by the metal cores. The results demonstrate that even molecules larger than the ZIF‐8 aperture and pore size may be able to diffuse through the framework and reach the metal core.  相似文献   

18.
This paper describes picoliter‐sized lipid bilayer chambers and their theoretical model for the rapid detection of membrane transport. To prepare the chambers, semispherical aqueous droplets are patterned on a hydrophilic/hydrophobic substrate and then brought into contact with another aqueous droplet in lipid‐dispersed organic solvent, resulting in the formation of the lipid bilayers on the semispherical droplets. The proposed method implements the lipid bilayer chambers with 25‐fold higher ratio of lipid membrane area (S) to chamber volume (V) compared to the previous spherical droplet chambers. Using these chambers, we are able to trace the time‐course of Ca2+ influx through α‐hemolysin pores by a fluorescent indicator. Moreover, we confirm that the detection time of the substrate transport is inversely proportional to the S/V ratio of the developed chambers, which is consistent with the simulation results based on the developed model. Our chambers and model might be useful for rapid functional analyses of membrane transport phenomena.  相似文献   

19.
Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum–Pressure Accelerated Movement (V‐PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead‐end channels and closed chambers. Operation of the V‐PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas‐permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V‐PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V‐PAM for rapid filling of temperature‐sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V‐PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs‐on‐chips, and biomimetic studies.  相似文献   

20.
Black phosphorus (BP) with unique 2D structure enables the intercalation of foreign elements or molecules, which makes BP directly relevant to high‐capacity rechargeable batteries and also opens a promising strategy for tunable electronic transport and superconductivity. However, the underlying intercalation mechanism is not fully understood. Here, a comparative investigation on the electrochemically driven intercalation of lithium and sodium using in situ transmission electron microscopy is presented. Despite the same preferable intercalation channels along [100] (zigzag) direction, distinct anisotropic intercalation behaviors are observed, i.e., Li ions activate lateral intercalation along [010] (armchair) direction to form an overall uniform propagation, whereas Na diffusion is limited in the zigzag channels to cause the columnar intercalation. First‐principles calculations indicate that the diffusion of both Li and Na ions along the zigzag direction is energetically favorable, while Li/Na diffusion long the armchair direction encounters an increased energy barrier, but that of Na is significantly larger and insurmountable, which accounts for the orientation‐dependent intercalation channels. The evolution of chemical states during phase transformations (from LixP/NaxP to Li3P/Na3P) is identified by analytical electron diffraction and energy‐loss spectroscopy. The findings elucidate atomistic Li/Na intercalation mechanisms in BP and show potential implications for other similar 2D materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号