首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterning of high‐mobility 2D semiconducting materials with unique layered structures and superb electronic properties offers great potential for batch fabrication and integration of next‐generation electronic and optoelectronic devices. Here, a facile approach is used to achieve accurate patterning of 2D high‐mobility semiconducting Bi2O2Se crystals using dilute H2O2 and protonic mixture acid as efficient etchants. The 2D Bi2O2Se crystal after chemical etching maintains a high Hall mobility of over 200 cm2 V?1 s?1 at room temperature. Centimeter‐scale well‐ordered arrays of 2D Bi2O2Se with tailorable configurations are readily obtained. Furthermore, integrated photodetectors based on 2D Bi2O2Se arrays are fabricated, exhibiting excellent air stability and high photoresponsivity of ≈2000 A W?1 at 532 nm. These results are one step towards the practical application of ultrathin 2D integrated digital and optoelectronic circuits.  相似文献   

2.
2D materials are considered as intriguing building blocks for next‐generation optoelectronic devices. However, their photoresponse performance still needs to be improved for practical applications. Here, ultrasensitive 2D phototransistors are reported employing chemical vapor deposition (CVD)‐grown 2D Bi2O2Se transferred onto silicon substrates with a noncorrosive transfer method. The as‐transferred Bi2O2Se preserves high quality in contrast to the serious quality degradation in hydrofluoric‐acid‐assisted transfer. The phototransistors show a responsivity of 3.5 × 104 A W?1, a photoconductive gain of more than 104, and a time response in the order of sub‐millisecond. With back gating of the silicon substrate, the dark current can be reduced to several pA. This yields an ultrahigh sensitivity with a specific detectivity of 9.0 × 1013 Jones, which is one of the highest values among 2D material photodetectors and two orders of magnitude higher than that of other CVD‐grown 2D materials. The high performance of the phototransistor shown here together with the developed unique transfer technique are promising for the development of novel 2D‐material‐based optoelectronic applications as well as integrating with state‐of‐the‐art silicon photonic and electronic technologies.  相似文献   

3.
Inverse photoresponse is discovered from phototransistors based on molybdenum disulfide (MoS2). The devices are capable of detecting photons with energy below the bandgap of MoS2. Under the illumination of near‐infrared (NIR) light at 980 and 1550 nm, negative photoresponses with short response time (50 ms) are observed for the first time. Upon visible‐light illumination, the phototransistors exhibit positive photoresponse with ultrahigh responsivity on the order of 104–105 A W?1 owing to the photogating effect and charge trapping mechanism. Besides, the phototransistors can detect a weak visible‐light signal with effective optical power as low as 17 picowatts (pW). A thermally induced photoresponse mechanism, the bolometric effect, is proposed as the cause of the negative photocurrent in the NIR regime. The thermal energy of the NIR radiation is transferred to the MoS2 crystal lattice, inducing lattice heating and resistance increase. This model is experimentally confirmed by low‐temperature electrical measurements. The bolometric coefficient calculated from the measured transport current change with temperature is ?33 nA K?1. These findings offer a new approach to develop sub‐bandgap photodetectors and other novel optoelectronic devices based on 2D layered materials.  相似文献   

4.
Bi2O2Se is the most promising 2D material due to its semiconducting feature and high mobility, making it propitious channel material for high-performance electronics that demands highly crystalline Bi2O2Se at low-growth temperature. Here, a low-temperature salt-assisted chemical vapor deposition approach for growing single-domain Bi2O2Se on a millimeter scale with thicknesses of multilayer to monolayer is presented. Because of the advantage of thickness-dependent growth, systematical scrutiny of layer-dependent Raman spectroscopy of Bi2O2Se from monolayer to bulk is investigated, revealing a redshift of the A1g mode at 162.4 cm−1. Moreover, the long-term environmental stability of ≈2.4 nm thick Bi2O2Se is confirmed after exposing the sample for 1.5 years to air. The backgated field effect transistor (FET) based on a few-layered Bi2O2Se flake represents decent carrier mobility (≈287 cm2 V−1s−1) and an ON/OFF ratio of up to 107. This report indicates a technique to grow large-domain thickness controlled Bi2O2Se single crystals for electronics.  相似文献   

5.
As new 2D layered nanomaterials, Bi2O2Se nanoplates have unique semiconducting properties that can benefit biomedical applications. Herein, a facile top‐down approach for the synthesis of Bi2O2Se quantum dots (QDs) in a solution is described. The Bi2O2Se QDs with a size of 3.8 nm and thickness of 1.9 nm exhibit a high photothermal conversion coefficient of 35.7% and good photothermal stability. In vitro and in vivo assessments demonstrate that the Bi2O2Se QDs possess excellent photoacoustic (PA) performance and photothermal therapy (PTT) efficiency. After systemic administration, the Bi2O2Se QDs accumulate passively in tumors enabling efficient PA imaging of the entire tumors to facilitate imaging‐guided PTT without obvious toxicity. Furthermore, the Bi2O2Se QDs which exhibit degradability in aqueous media not only have sufficient stability during in vivo circulation to perform the designed therapeutic functions, but also can be discharged harmlessly from the body afterward. The results reveal the great potential of Bi2O2Se QDs as a biodegradable multifunctional agent in medical applications.  相似文献   

6.
Emerging novel applications at the forefront of innovation horizon raise new requirements including good flexibility and unprecedented properties for the photoelectronic industry. On account of diversity in transport and photoelectric properties, 2D layered materials have proven as competent building blocks toward next‐generation photodetectors. Herein, an all‐2D Bi2Te3‐SnS‐Bi2Te3 photodetector is fabricated with pulsed‐laser deposition. It is sensitive to broadband wavelength from ultraviolet (370 nm) to near‐infrared (808 nm). In addition, it exhibits great durability to bend, with intact photoresponse after 100 bend cycles. Upon 370 nm illumination, it achieves a high responsivity of 115 A W?1, a large external quantum efficiency of 3.9 × 104%, and a superior detectivity of 4.1 × 1011 Jones. They are among the best figures‐of‐merit of state‐of‐the‐art 2D photodetectors. The synergistic effect of SnS's strong light–matter interaction, efficient carrier separation of Bi2Te3–SnS interface, expedite carrier injection across Bi2Te3–SnS interface, and excellent carrier collection of Bi2Te3 topological insulator electrodes accounts for the superior photodetection properties. In summary, this work depicts a facile all‐in‐one fabrication strategy toward a Bi2Te3‐SnS‐Bi2Te3 photodetector. More importantly, it reveals a novel all‐2D concept for construction of flexible, broadband, and high‐performance photoelectronic devices by integrating 2D layered metallic electrodes and 2D layered semiconducting channels.  相似文献   

7.
Fabrication of a high‐temperature deep‐ultraviolet photodetector working in the solar‐blind spectrum range (190–280 nm) is a challenge due to the degradation in the dark current and photoresponse properties. Herein, β‐Ga2O3 multi‐layered nanobelts with (l00) facet‐oriented were synthesized, and were demonstrated for the first time to possess excellent mechanical, electrical properties and stability at a high temperature inside a TEM studies. As‐fabricated DUV solar‐blind photodetectors using (l00) facet‐oriented β‐Ga2O3 multi‐layered nanobelts demonstrated enhanced photodetective performances, that is, high sensitivity, high signal‐to‐noise ratio, high spectral selectivity, high speed, and high stability, importantly, at a temperature as high as 433 K, which are comparable to other reported semiconducting nanomaterial photodetectors. In particular, the characteristics of the photoresponsivity of the β‐Ga2O3 nanobelt devices include a high photoexcited current (>21 nA), an ultralow dark current (below the detection limit of 10?14 A), a fast time response (<0.3 s), a high Rλ (≈851 A/W), and a high EQE (~4.2 × 103). The present fabricated facet‐oriented β‐Ga2O3 multi‐layered nanobelt based devices will find practical applications in photodetectors or optical switches for high‐temperature environment.  相似文献   

8.
The field of photovoltaics is revolutionized in recent years by the development of two–dimensional (2D) type-II heterostructures. These heterostructures are made up of two different materials with different electronic properties, which allows for the capture of a broader spectrum of solar energy than traditional photovoltaic devices. In this study, the potential of vanadium (V)-doped WS2 is investigated, hereafter labeled V-WS2, in combination with air-stable Bi2O2Se for use in high-performance photovoltaic devices. Various techniques are used to confirm the charge transfer of these heterostructures, including photoluminescence (PL) and Raman spectroscopy, along with Kelvin probe force microscopy (KPFM). The results show that the PL is quenched by 40%, 95%, and 97% for WS2/Bi2O2Se, 0.4 at.% V-WS2/Bi2O2Se, and 2 at.% V-WS2/Bi2O2Se, respectively, indicating a superior charge transfer in V-WS2/Bi2O2Se compared to pristine WS2/Bi2O2Se. The exciton binding energies for WS2/Bi2O2Se, 0.4 at.% V-WS2/Bi2O2Se and 2 at.% V-WS2/Bi2O2Se heterostructures are estimated to be ≈130, 100, and 80 meV, respectively, which is much lower than that for monolayer WS2. These findings confirm that by incorporating V-doped WS2, charge transfer in WS2/Bi2O2Se heterostructures can be tuned, providing a novel light-harvesting technique for the development of the next generation of photovoltaic devices based on V-doped transition metal dichalcogenides (TMDCs)/Bi2O2Se.  相似文献   

9.
2D transition metal dichalcogenides (TMDCs) have attracted considerable attention due to their impressively high performance in optoelectronic devices. However, efficient infrared (IR) photodetection has been significantly hampered because the absorption wavelength range of most TMDCs lies in the visible spectrum. In this regard, semiconducting 2D MoTe2 can be an alternative choice owing to its smaller band gap ≈1 eV from bulk to monolayer and high carrier mobility. Here, a MoTe2/graphene heterostructure photodetector is demonstrated for efficient near‐infrared (NIR) light detection. The devices achieve a high responsivity of ≈970.82 A W?1 (at 1064 nm) and broadband photodetection (visible‐1064 nm). Because of the effective photogating effect induced by electrons trapped in the localized states of MoTe2, the devices demonstrate an extremely high photoconductive gain of 4.69 × 108 and detectivity of 1.55 × 1011 cm Hz1/2 W?1. Moreover, flexible devices based on the MoTe2/graphene heterostructure on flexible substrate also retains a good photodetection ability after thousands of times bending test (1.2% tensile strain), with a high responsivity of ≈60 A W?1 at 1064 nm at V DS = 1 V, which provides a promising platform for highly efficient, flexible, and low cost broadband NIR photodetectors.  相似文献   

10.
Bi2O2Se was synthesized from Bi2Se3 and Bi2O3 by solid state reaction in an evacuated quartz ampoule. The product crystallizes in the tetragonal type lattice and X-ray pattern displays lines of the Bi2O2Se only. Samples for thermoelectric property measurements were prepared using hot pressing in rectangular graphite dies. The samples were characterized by the measurements of Seebeck coefficient, electrical conductivity and thermal conductivity as a function of temperature. From the experimental data we calculate the dimensionless figure of merit ZT that for a non-optimized material approaches the value 0.2 at 800 K.  相似文献   

11.
Organic single‐crystalline semiconductors show great potential in high‐performance photodetectors. However, they suffer from persistent photoconductivity (PPC) due to the charge trapping, which has severely hindered high‐speed imaging applications. Here, a universal strategy of solving the PPC by integrating with topological insulator Bi2Se3 is provided. The rubrene/Bi2Se3 heterojunctions are selected as an example for general demonstration due to the reproducibly high mobility and broad optoelectronic applications of rubrene crystals. By virtue of high carrier concentration on Bi2Se3 surface and the strong built‐in electrical field, the photoresponse of the heterotransistor is significantly reduced for more than two orders (from over 10 s to 54 ms), meanwhile the photoresponsivity can reach 124 A W?1. To the best of knowledge, this operating speed is among the fastest responses in organic–inorganic heterojunctions. The heterotransistor also shows unique negative differential resistance under positive gate bias, which can be explained by photoinduced de‐trapping of electron trap states in the bulk rubrene crystals. Besides, the rubrene/Bi2Se3 heterojunction behaves as a gate‐tunable backward‐like diode due to the inhomogenous carrier distribution in the thick rubrene crystal and inversion of relative Fermi level positions. The findings demonstrate versatile functionalities of the rubrene/Bi2Se3 heterojunctions for various emerging optoelectronic applications.  相似文献   

12.
The ultrabroadband spectrum detection from ultraviolet (UV) to long-wavelength infrared (LWIR) is promising for diversified optoelectronic applications of imaging, sensing, and communication. However, the current LWIR-detecting devices suffer from low photoresponsivity, high cost, and cryogenic environment. Herein, a high-performance ultrabroadband photodetector is demonstrated with detecting range from UV to LWIR based on air-stable nonlayered ultrathin Fe3O4 nanosheets synthesized via a space-confined chemical vapor deposition (CVD) method. Ultrahigh photoresponsivity (R) of 561.2 A W−1, external quantum efficiency (EQE) of 6.6 × 103%, and detectivity (D*) of 7.42 × 108 Jones are achieved at the wavelength of 10.6 µm. The multimechanism synergistic effect of photoconductive effect and bolometric effect demonstrates the high sensitivity for light with any light intensities. The outstanding device performance and complementary mixing photoresponse mechanisms open up new potential applications of nonlayered 2D materials for future infrared optoelectronic devices.  相似文献   

13.
The structure and dielectric properties of perovskite Ag(Nb0.8Ta0.2)O3 ceramics were explored. A small amount of Bi2O3 was used to modify the dielectric properties of the ceramics. The addition of Bi2O3 led the ceramics to a high densification and optimal dielectric properties. With the addition of 4.5 wt% Bi2O3, the permittivity of Ag(Nb0.8Ta0.2)O3 ceramics increased from 470 to 733, the dielectric loss decreased from 62×10?4 to 6.7×10?4, and the temperature coefficient of capacitance, TCC, decreased from 2004 ppm/°C to ?50 ppm/°C. The high permittivity obtained was due to the high densification and weak Ta-O or Nb-O bond strength in the oxygen octahedron that results from the addition of Bi2O3.  相似文献   

14.
MoS2, one of the most valued 2D materials beyond graphene, shows potential for future applications in postsilicon digital electronics and optoelectronics. However, achieving hole transport in MoS2, which is dominated by electron transport, is always a challenge. Here, MoS2 transistors gated by electrolyte gel exhibit the characteristics of hole and electron transport, a high on/off ratio over 105, and a low subthreshold swing below 50 mV per decade. Due to the electrolyte gel, the density of electrons and holes in the MoS2 channel reaches ≈9 × 1013 and 8.85 × 1013 cm?2, respectively. The electrolyte gel‐assisted MoS2 phototransistor exhibits adjustable positive and negative photoconductive effects. Additionally, the MoS2 p–n homojunction diode affected by electrolyte gel shows high performance and a rectification ratio over 107. These results demonstrate that modifying the conductance of MoS2 through electrolyte gel has great potential in highly integrated electronics and optoelectronic photodetectors.  相似文献   

15.
A demonstration is presented of how significant improvements in all‐2D photodetectors can be achieved by exploiting the type‐II band alignment of vertically stacked WS2/MoS2 semiconducting heterobilayers and finite density of states of graphene electrodes. The photoresponsivity of WS2/MoS2 heterobilayer devices is increased by more than an order of magnitude compared to homobilayer devices and two orders of magnitude compared to monolayer devices of WS2 and MoS2, reaching 103 A W?1 under an illumination power density of 1.7 × 102 mW cm?2. The massive improvement in performance is due to the strong Coulomb interaction between WS2 and MoS2 layers. The efficient charge transfer at the WS2/MoS2 heterointerface and long trapping time of photogenerated charges contribute to the observed large photoconductive gain of ≈3 × 104. Laterally spaced graphene electrodes with vertically stacked 2D van der Waals heterostructures are employed for making high‐performing ultrathin photodetectors.  相似文献   

16.
2D halide semiconductors, a new family of 2D materials in addition to transition metal dichalcogenides, present ultralow dark current and high light conversion yield, which hold great potential in photoconductive detectors. Herein, a facile aqueous solution method is developed for the preparation of large‐scale 2D lead dihalide nanosheets (PbF2‐xIx). High‐performance UV photodetectors are successfully implemented based on 2D PbF2‐xIx nanosheets. By modulating the components of halogens, the bandgap of PbF2‐xIx nanosheets can be tuned to meet varied detection spectra. The photoresponse dependence on incident power density, wavelength, detection environment, and temperature are systematically studied to investigate their detection mechanism. For PbI2 photodetectors, they are dominantly driven by a photoconduction mechanism and show a fast response speed and a low noise current density. A high normalized detectivity of 1.5 × 1012 Jones and an ION/IOFF ratio up to 103 are reached. On the other hand, PbFI photodetectors demonstrate a photogating mechanism mediated by trap states showing high responsivity. The novel 2D halide materials with wide bandgaps, superior detection performance, and facile synthesis process can enrich the Van der Waals solids family and hold great potential for a wide variety of applications in advanced optoelectronics.  相似文献   

17.
Sangwan  Vinod K.  Kang  Joohoon  Lam  David  Gish  J. Tyler  Wells  Spencer A.  Luxa  Jan  Male  James P.  Snyder  G. Jeffrey  Sofer  Zdeněk  Hersam  Mark C. 《Nano Research》2021,14(6):1961-1966

Emerging layered semiconductors present multiple advantages for optoelectronic technologies including high carrier mobilities, strong light-matter interactions, and tunable optical absorption and emission. Here, metal-semiconductor-metal avalanche photodiodes (APDs) are fabricated from Bi2O2Se crystals, which consist of electrostatically bound [Bi2O2]2+ and [Se]2− layers. The resulting APDs possess an intrinsic carrier multiplication factor up to 400 at 7 K with a responsivity gain exceeding 3,000 A/W and bandwidth of ~ 400 kHz at a visible wavelength of 515.6 nm, ultimately resulting in a gain bandwidth product exceeding 1 GHz. Due to exceptionally low dark currents, Bi2O2Se APDs also yield high detectivities up to 4.6 × 1014 Jones. A systematic analysis of the photocurrent temperature and bias dependence reveals that the carrier multiplication process in Bi2O2Se APDs is consistent with a reverse biased Schottky diode model with a barrier height of ~ 44 meV, in contrast to the charge trapping extrinsic gain mechanism that dominates most layered semiconductor phototransistors. In this manner, layered Bi2O2Se APDs provide a unique platform that can be exploited in a diverse range of high-performance photodetector applications.

  相似文献   

18.
Ultraviolet (UV) photodetectors based on pure zinc oxide (ZnO) and Ag-doped ZnO (Ag:ZnO) thin films with different Ag doping contents (0.05, 0.15, 0.65, 1.30 and 2.20 %) have been prepared by sol–gel technique. Photoresponse characteristics of the prepared detectors have been studied for UV radiation of λ = 365 nm and intensity = 24 μW/cm2. The Ag:ZnO thin film-based photodetector having an optimum amount of 0.15 at. wt% Ag dopant exhibits a high photoconductive gain (K = 1.32 × 103) with relatively fast recovery (T 37 % = 600 ms) and minimal persistence in comparison to other prepared photodetectors. The incorporation of Ag dopant (≤0.15 %) at Zn lattice sites (Agzn) in ZnO creates acceptor levels in the forbidden gap, thereby reducing the value of dark current. Upon illumination with UV radiation, the photogenerated holes recombine with the captured electrons at the Agzn sites. The photogenerated electrons increase the concentration of conduction electrons, thereby giving an enhanced photoresponse for Ag:ZnO photodetector (0.15 % Ag). At higher dopant concentration (≥0.65 %), Ag incorporated at the interstitial sites of ZnO leads to the formation of deep energy levels below the conduction band along with increase in oxygen-related defects, thereby giving higher values of dark current. The incorporation of Ag at interstitial sites results in degradation of photoresponse along with the appearance of persistence in recovery of the photodetector in the absence of UV radiation.  相似文献   

19.
The effect of substitution of Bi2O3 for alkali oxides in the borosilicate sealing glass on thermal properties, structure and wetting behavior of the borosilicate glass was studied. The thermal expansion coefficient (TEC) decreased with the substitution, however, the TEC varied little while the alkali oxides were completely consumed. The variation in glass transition temperature (Tg) and the FTIR results of the glasses indicated significant effect of Bi2O3 substitution on the glass structure, which caused a progressive conversion of BO3 to BO4 unit in the glass. The appropriate amount of Bi2O3 obviously improved the wetting performance of the borosilicate glass on Al2O3 substrate due to the high polarizability of Bi3+ ion.  相似文献   

20.
Bi/Mo multilayer thin films are deposited on Si/SiO2/Pt substrates by direct current magnetron sputtering. The effect of annealing temperature on the microstructure, dielectric and electrical properties of the as-sputtered films is characterized systematically. X-ray diffraction data indicate that the films annealed at 450–600 °C are a mixture of diphase with the main phase Bi2MoO6 and secondary phase Bi2Mo2O9. Results of scanning electron microscope observation show that the films annealed at 500–550 °C are dense and uniform, in particular the films annealed at 500 °C exhibit optimal dielectric and electrical properties with dielectric constant as high as 37.5, dielectric loss 1.06 %, temperature coefficient of dielectric constant ?10.86 ppm °C?1 at 1 kHz, and leakage current density of 1.46 × 10?7 A mm?2 at an electric field of 18.2 kV mm?1. With the advantages of ultralow densification temperature (500 °C) and very high sputtering deposition rate (76 nm min?1), it is anticipated that thermal oxidation method of the sputtered Bi/Mo thin films could be a promising technique for fabrication of Bi2MoO6 ceramic thin film embedded-capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号