共查询到20条相似文献,搜索用时 0 毫秒
1.
Steven E. Naleway Michael M. Porter Joanna McKittrick Marc A. Meyers 《Advanced materials (Deerfield Beach, Fla.)》2015,27(37):5455-5476
Eight structural elements in biological materials are identified as the most common amongst a variety of animal taxa. These are proposed as a new paradigm in the field of biological materials science as they can serve as a toolbox for rationalizing the complex mechanical behavior of structural biological materials and for systematizing the development of bioinspired designs for structural applications. They are employed to improve the mechanical properties, namely strength, wear resistance, stiffness, flexibility, fracture toughness, and energy absorption of different biological materials for a variety of functions (e.g., body support, joint movement, impact protection, weight reduction). The structural elements identified are: fibrous, helical, gradient, layered, tubular, cellular, suture, and overlapping. For each of the structural design elements, critical design parameters are presented along with constitutive equations with a focus on mechanical properties. Additionally, example organisms from varying biological classes are presented for each case to display the wide variety of environments where each of these elements is present. Examples of current bioinspired materials are also introduced for each element. 相似文献
2.
How to arrange soft materials with strong but brittle reinforcements to achieve attractive combinations of stiffness, strength and toughness is an ongoing and fascinating question in engineering and biological materials science. Recent advances in topology optimization and bioinspiration have brought interesting answers to this question, but they provide only small windows into the vast design space associated with this problem. Here, we take a more global approach in which we assess the mechanical performance of thousands of possible microstructures. This exhaustive exploration gives a global picture of structure–property relationships and guarantees that global optima can be found. Landscapes of optimum solutions for different combinations of desired properties can also be created, revealing the robustness of each of the solutions. Interestingly, while some of the major hybrid designs used in engineering are absent from the set of solutions, the microstructures emerging from this process are reminiscent of materials, such as bone, nacre or spider silk. 相似文献
3.
Wei Huang David Restrepo Jae‐Young Jung Frances Y. Su Zengqian Liu Robert O. Ritchie Joanna McKittrick Pablo Zavattieri David Kisailus 《Advanced materials (Deerfield Beach, Fla.)》2019,31(43)
Biological materials found in Nature such as nacre and bone are well recognized as light‐weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic‐ to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature. 相似文献
4.
Protein encapsulation is a growing area of interest, particularly in the fields of food science and medicine. The sequestration of protein cargoes is achieved using a variety of methods, each with benefits and drawbacks. One of the most significant challenges associated with protein encapsulation is achieving high loading while maintaining protein viability. This difficulty is exacerbated because many encapsulant systems require the use of organic solvents. By contrast, nature has optimized strategies to compartmentalize and protect proteins inside the cell—a purely aqueous environment. Although the mechanisms whereby aspects of the cytosol is able to stabilize proteins are unknown, the crowded nature of many newly discovered, liquid phase separated “membraneless organelles” that achieve protein compartmentalization suggests that the material environment surrounding the protein may be critical in determining stability. Here, encapsulation strategies based on liquid–liquid phase separation, and complex coacervation in particular, which has many of the key features of the cytoplasm as a material, are reviewed. The literature on protein encapsulation via coacervation is also reviewed and the parameters relevant to creating protein‐containing coacervate formulations are discussed. Additionally, potential opportunities associated with the creation of tailored materials to better facilitate protein encapsulation and stabilization are highlighted. 相似文献
5.
6.
Outstanding mechanical properties of biological multilayered materials are strongly influenced by nanoscale features in their structure. In this study, mechanical behaviour and toughening mechanisms of abalone nacre-inspired multilayered materials are explored. In nacre''s structure, the organic matrix, pillars and the roughness of the aragonite platelets play important roles in its overall mechanical performance. A micromechanical model for multilayered biological materials is proposed to simulate their mechanical deformation and toughening mechanisms. The fundamental hypothesis of the model is the inclusion of nanoscale pillars with near theoretical strength (σth ~ E/30). It is also assumed that pillars and asperities confine the organic matrix to the proximity of the platelets, and, hence, increase their stiffness, since it has been previously shown that the organic matrix behaves more stiffly in the proximity of mineral platelets. The modelling results are in excellent agreement with the available experimental data for abalone nacre. The results demonstrate that the aragonite platelets, pillars and organic matrix synergistically affect the stiffness of nacre, and the pillars significantly contribute to the mechanical performance of nacre. It is also shown that the roughness induced interactions between the organic matrix and aragonite platelet, represented in the model by asperity elements, play a key role in strength and toughness of abalone nacre. The highly nonlinear behaviour of the proposed multilayered material is the result of distributed deformation in the nacre-like structure due to the existence of nano-asperities and nanopillars with near theoretical strength. Finally, tensile toughness is studied as a function of the components in the microstructure of nacre. 相似文献
7.
Hydrogels: Artificially Engineered Protein Hydrogels Adapted from the Nucleoporin Nsp1 for Selective Biomolecular Transport (Adv. Mater. 28/2015)
下载免费PDF全文

Minkyu Kim Wesley G. Chen Jeon Woong Kang Matthew J. Glassman Katharina Ribbeck Bradley D. Olsen 《Advanced materials (Deerfield Beach, Fla.)》2015,27(28):4244-4244
8.
自然界中生物材料表现出的力学性能与其结构设计形式紧密相关。柔性生物材料多为多级结构设计,其独特的功能梯度特征使其具备优异的变形能力及良好的断裂韧性。本文借鉴工程结构设计基本单元的思想提出柔性结构仿生元素理念,根据几何形态将结构仿生元素分为:线元素、梁元素、柱元素、板壳元素、薄膜元素及组合元素。根据系统论的观点建立仿生柔性结构设计体系,归纳总结出柔性仿生结构的设计准则,并基于鱼鳞梯度结构设计新型仿生功能梯度板。通过有限元的方法对功能梯度板归一化自然频率进行分析。结果表明,类鱼鳞功能梯度板具有柔韧性及刚度软化特性。阐述了仿生柔性结构的设计方法,包括模仿设计、组合设计及选择匹配设计。 相似文献
9.
Xiao Han Khalil T. Hassan Alan Harvey Dejan Kulijer Adrian Oila Michael R. C. Hunt Lidija Šiller 《Advanced materials (Deerfield Beach, Fla.)》2018,30(23)
Aerogels are the least dense and most porous materials known to man, with potential applications from lightweight superinsulators to smart energy materials. To date their use has been seriously hampered by their synthesis methods, which are laborious and expensive. Taking inspiration from the life cycle of the damselfly, a novel ambient pressure‐drying approach is demonstrated in which instead of employing low‐surface‐tension organic solvents to prevent pore collapse during drying, sodium bicarbonate solution is used to generate pore‐supporting carbon dioxide in situ, significantly reducing energy, time, and cost in aerogel production. The generic applicability of this readily scalable new approach is demonstrated through the production of granules, monoliths, and layered solids with a number of precursor materials. 相似文献
10.
Ayaka Kamada Aviad Levin Zenon Toprakcioglu Yi Shen Viviane Lutz‐Bueno Kevin N. Baumann Pezhman Mohammadi Markus B. Linder Raffaele Mezzenga Tuomas P. J. Knowles 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(9)
Protein‐based fibers are used by nature as high‐performance materials in a wide range of applications, including providing structural support, creating thermal insulation, and generating underwater adhesives. Such fibers are commonly generated through a hierarchical self‐assembly process, where the molecular building blocks are geometrically confined and aligned along the fiber axis to provide a high level of structural robustness. Here, this approach is mimicked by using a microfluidic spinning method to enable precise control over multiscale order during the assembly process of nanoscale protein nanofibrils into micro‐ and macroscale fibers. By varying the flow rates on chip, the degree of nanofibril alignment can be tuned, leading to an orientation index comparable to that of native silk. It is found that the Young's modulus of the resulting fibers increases with an increasing level of nanoscale alignment of the building blocks, suggesting that the mechanical properties of macroscopic fibers can be controlled through varying the level of ordering of the nanoscale building blocks. Capitalizing on strategies evolved by nature, the fabrication method allows for the controlled formation of macroscopic fibers and offers the potential to be applied for the generation of further novel bioinspired materials. 相似文献
11.
In this review a strategy for the design of bioinspired, smart, multiscale interfacial (BSMI) materials is presented and put into context with recent progress in the field of BSMI materials spanning natural to artificial to reversibly stimuli‐sensitive interfaces. BSMI materials that respond to single/dual/multiple external stimuli, e.g., light, pH, electrical fields, and so on, can switch reversibly between two entirely opposite properties. This article utilizes hydrophobicity and hydrophilicity as an example to demonstrate the feasibility of the design strategy, which may also be extended to other properties, for example, conductor/insulator, p‐type/n‐type semiconductor, or ferromagnetism/anti‐ferromagnetism, for the design of other BSMI materials in the future. 相似文献
12.
C. Wyatt Shields IV Lily Li-Wen Wang Michael A. Evans Samir Mitragotri 《Advanced materials (Deerfield Beach, Fla.)》2020,32(13):1901633
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented. 相似文献
13.
Wen Yang Irene H. Chen Bernd Gludovatz Elizabeth A. Zimmermann Robert O. Ritchie Marc A. Meyers 《Advanced materials (Deerfield Beach, Fla.)》2013,25(1):31-48
Fish, reptiles, and mammals can possess flexible dermal armor for protection. Here we seek to find the means by which Nature derives its protection by examining the scales from several fish (Atractosteus spatula, Arapaima gigas, Polypterus senegalus, Morone saxatilis, Cyprinius carpio), and osteoderms from armadillos, alligators, and leatherback turtles. Dermal armor has clearly been developed by convergent evolution in these different species. In general, it has a hierarchical structure with collagen fibers joining more rigid units (scales or osteoderms), thereby increasing flexibility without significantly sacrificing strength, in contrast to rigid monolithic mineral composites. These dermal structures are also multifunctional, with hydrodynamic drag (in fish), coloration for camouflage or intraspecies recognition, temperature and fluid regulation being other important functions. The understanding of such flexible dermal armor is important as it may provide a basis for new synthetic, yet bioinspired, armor materials. 相似文献
14.
15.
16.
Maria Moffa Anna Giovanna Sciancalepore Laura Gioia Passione Dario Pisignano 《Small (Weinheim an der Bergstrasse, Germany)》2014,10(12):2439-2450
The major cause of synthetic vessel failure is thrombus and neointima formation. To prevent these problems the creation of a continuous and elongated endothelium inside lumen vascular grafts might be a promising solution for tissue engineering. Different micro‐ and nano‐surface topographic cues including grooved micro‐patterns and electrospun fibers have been previously demonstrated to guide the uniform alignment of endothelial cells (ECs). Here, with a very simple and highly versatile approach we combined electrospinning with soft lithography to fabricate nanofibrous scaffolds with oriented fibers modulated by different micro‐grooved topographies. The effect of these scaffolds on the behavior of the ECs are analyzed, including their elongation, spreading, proliferation, and functioning using unpatterned random and aligned nanofibers (NFs) as controls. It is demonstrated that both aligned NFs and micro‐patterns effectively influence the cellular response, and that a proper combination of topographic parameters, exploiting the synergistic effects of micro‐scale and sub‐micrometer features, can promote EC elongation, allowing the creation of a confluent ECs monolayer in analogy with the natural endothelium as assessed by the positive expression of vinculin. Combining different micro‐ and nano‐topographic cues by complementary soft patterning and spinning technologies could open interesting perspectives for engineered vascular replacement constructions. 相似文献
17.
聚乳酸与多糖都是生物可降解、生物相容性材料,将聚乳酸的力学性能优越性和多糖的生物学优越性能综合利用起来,设计生物仿生材料是一种制备生物医用材料的新手段。文中综合讨论了聚乳酸与多糖接枝改性的最新研究进展,同时对于这类生物仿生材料目前存在的问题以及前景进行了评估。 相似文献
18.
Moyuan Cao Xu Jin Yun Peng Cunming Yu Kan Li Kesong Liu Lei Jiang 《Advanced materials (Deerfield Beach, Fla.)》2017,29(23)
Here, a smart fluid‐controlled surface is designed, via the rational integration of the unique properties of three natural examples, i.e., the unidirectional wetting behaviors of butterfly's wing, liquid‐infused “slippery” surface of the pitcher plant, and the motile microcilia of micro‐organisms. Anisotropic wettability, lubricated surfaces, and magnetoresponsive microstructures are assembled into one unified system. The as‐prepared surface covered by tilted microcilia achieves significant unidirectional droplet adhesion and sliding. Regulating by external magnet field, the directionality of ferromagnetic microcilia can be synergistically switched, which facilitates a continuous and omnidirectional‐controllable water delivery. This work opens an avenue for applications of anisotropic wetting surfaces, such as complex‐flow distribution and liquid delivery, and extend the design approach of multi‐bioinspiration integration. 相似文献
19.
20.
Alan J. Ryan Cathal J. Kearney Nian Shen Umar Khan Adam G. Kelly Christopher Probst Eva Brauchle Sonia Biccai Carolina D. Garciarena Victor Vega‐Mayoral Peter Loskill Steve W. Kerrigan Daniel J. Kelly Katja Schenke‐Layland Jonathan N. Coleman Fergal J. O'Brien 《Advanced materials (Deerfield Beach, Fla.)》2018,30(15)
Electroconductive substrates are emerging as promising functional materials for biomedical applications. Here, the development of biohybrids of collagen and pristine graphene that effectively harness both the biofunctionality of the protein component and the increased stiffness and enhanced electrical conductivity (matching native cardiac tissue) obtainable with pristine graphene is reported. As well as improving substrate physical properties, the addition of pristine graphene also enhances human cardiac fibroblast growth while simultaneously inhibiting bacterial attachment (Staphylococcus aureus). When embryonic‐stem‐cell‐derived cardiomyocytes (ESC‐CMs) are cultured on the substrates, biohybrids containing 32 wt% graphene significantly increase metabolic activity and cross‐striated sarcomeric structures, indicative of the improved substrate suitability. By then applying electrical stimulation to these conductive biohybrid substrates, an enhancement of the alignment and maturation of the ESC‐CMs is achieved. While this in vitro work has clearly shown the potential of these materials to be translated for cardiac applications, it is proposed that these graphene‐based biohybrid platforms have potential for a myriad of other applications—particularly in electrically sensitive tissues, such as neural and neural and musculoskeletal tissues. 相似文献