首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Magnetic nanoparticles (MNPs) have great potential in biomedical applications, but the chemical synthesis of size‐controlled and functionalized core–shell MNPs remain challenging. Magnetosomes produced by the magnetotactic bacterium Magnetospirillum gryphiswaldense are naturally uniform and chemically pure magnetite MNPs with superior magnetic characteristics. Here, additional functionalities are made possible by the incorporation of biomolecules on the magnetosome surface; the magnetosome system is then chemically encapsulated with an inorganic coating. The novel multishell nanoparticles consist of the magnetosome core—which includes the magnetite crystal, the magnetosome membrane, and additional moieties, such as the enhanced green fluorescent protein (EGFP) and peptides—and an outer shell, comprising either silica or zinc oxide. Coating the functionalized magnetosomes with silica improves their colloidal stability and preserves the EGFP fluorescence in the presence of proteases and detergents. In addition, the surface charge of magnetosomes can be adjusted by varying the coating. This method will be useful for the versatile generation of new, multifunctional, multishell, and magnetic hybrid nanomaterials with potential applications in various biotechnological fields.  相似文献   

6.
Core–shell nanoparticles (CSNs) have attracted considerable attention because of their promising applications in a wide range of fields. Recently, substantial efforts have been focused on the development of facile and versatile methods for preparing CSNs with mesoporous SiO2 or TiO2 shells because of their fascinating properties, such as high surface area, large pore channels and high pore volume. This Research News reviews the recent progress in facile, versatile and reproducible approaches which are simply extended from the well‐known Stöber method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core–shell nanostructures. Several strategies, including the surfactant‐templating process, the long‐chain organosilane‐assisted approach, the phase transfer assisted surfactant‐templating process, and the kinetics‐controlled coating approach, are discussed. In addition, new trends in this field for the creation of multifunctional CSNs and novel nanostructures are highlighted.  相似文献   

7.
8.
Rational design and synthesis of 2D organic–inorganic hybrid materials is important for transformative technological advances for energy storage. Here, a 2D conductive hybrid lamella and its intercalation properties for thin‐film supercapacitors are reported. The 2D organic–inorganic hybrid lamella comprises periodically stacked 2D nanosheets with 11.81 Å basal spacing, and is electronically conductive (605 S m?1). In contrast to the pre‐existing organic‐based 2D materials, this material has extremely low gas‐permeable porosity (16.5 m2 g?1) in contrast to the high ionic accessibility. All these structural features collectively contribute to the high capacitances up to 732 F cm?3, combined with small structural swelling at as low as 4.8% and good stability. At a discharge time of 6 s, the thin‐film intercalation electrode delivers an energy density of 24 mWh cm?3, which universally outperforms the surface‐dominant capacitive processes in porous carbons.  相似文献   

9.
10.
11.
12.
The hybrid organic–inorganic perovskites (HOIPs) form a new class of semiconductors which show promising optoelectronic device applications. Remarkably, the optoelectronic properties of HOIP are tunable by changing the chemical components of their building blocks. Recently, the HOIP spintronic properties and their applications in spintronic devices have attracted substantial interest. Here the impact of the chemical component diversity in HOIPs on their spintronic properties is studied. Spin valve devices based on HOIPs with different organic cations and halogen atoms are fabricated. The spin diffusion length is obtained in the various HOIPs by measuring the giant magnetoresistance (GMR) response in spin valve devices with different perovskite interlayer thicknesses. In addition spin lifetime is also measured from the Hanle response. It is found that the spintronic properties of HOIPs are mainly determined by the halogen atoms, rather than the organic cations. The study provides a clear avenue for engineering spintronic devices based on HOIPs.  相似文献   

13.
Rattle‐type Fe3O4@SiO2 hollow mesoporous spheres with different particle sizes, different mesoporous shell thicknesses, and different levels of Fe3O4 content are prepared by using carbon spheres as templates. The effects of particle size and concentration of Fe3O4@SiO2 hollow mesoporous spheres on cell uptake and their in vitro cytotoxicity to HeLa cells are evaluated. The spheres exhibit relatively fast cell uptake. Concentrations of up to 150 µg mL?1 show no cytotoxicity, whereas a concentration of 200 µg mL?1 shows a small amount of cytotoxicity after 48 h of incubation. Doxorubicin hydrochloride (DOX), an anticancer drug, is loaded into the Fe3O4@SiO2 hollow mesoporous spheres, and the DOX‐loaded spheres exhibit a somewhat higher cytotoxicity than free DOX. These results indicate the potential of Fe3O4@SiO2 hollow mesoporous spheres for drug loading and delivery into cancer cells to induce cell death.  相似文献   

14.
Here, a novel, versatile synthetic strategy to fabricate a yolk–shell structured material that can encapsulate virtually any functional noble metal or metal oxide nanocatalysts of any morphology in a free suspension fashion is reported. This strategy also enables encapsulation of more than one type of nanoparticle inside a single shell, including paramagnetic iron oxide used for magnetic separation. The mesoporous organosilica shell provides efficient mass transfer of small target molecules, while serving as a size exclusion barrier for larger interfering molecules. Major structural and functional advantages of this material design are demonstrated by performing three proof‐of‐concept applications. First, effective encapsulation of plasmonic gold nanospheres for localized photothermal heating and heat‐driven reaction inside the shell is shown. Second, hydrogenation catalysis is demonstrated under spatial confinement driven by palladium nanocubes. Finally, the surface‐enhanced Raman spectroscopic detection of model pollutant by gold nanorods is presented for highly sensitive environmental sensing with size exclusion.  相似文献   

15.
At the core of luminescence color and lifetime tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the impact of the particle architecture for commonly used sensitizer (S) and activator (A) ions. In this respect, a series of core@shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@…, …@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core–shell NPs. As revealed by quantitative steady‐state and time‐resolved luminescence studies, the relative spatial distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical impact on their luminescence characteristics. Although the increased amount of Yb3+ ions boosts UCNP performance by amplifying the absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy migration to the surface, thereby reducing the overall energy transfer efficiency to the activator ions. The results provide yet another proof that UC phosphor chemistry combined with materials engineering through intentional core@shell structures may help to fine‐tune the luminescence features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and display technologies.  相似文献   

16.
17.
18.
The exploration of new porous hybrid materials is of great importance because of their unique properties and promising applications in separation of materials, catalysis, etc. Herein, for the first time, by integration of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), a new type of MOF@COF core–shell hybrid material, i.e., NH2‐MIL‐68@TPA‐COF, with high crystallinity and hierarchical pore structure, is synthesized. As a proof‐of‐concept application, the obtained NH2‐MIL‐68@TPA‐COF hybrid material is used as an effective visible‐light‐driven photocatalyst for the degradation of rhodamine B. The synthetic strategy in this study opens up a new avenue for the construction of other MOF–COF hybrid materials, which could have various promising applications.  相似文献   

19.
20.
Enormous advancement has been achieved in the field of one‐dimensional (1D) semiconductor light‐emitting devices (LEDs), however, LEDs based on 1D CdS nanostructures have been rarely reported. The fabrication of CdS@SiO2 core–shell nanorod array LEDs based on a Au–SiO2–CdS metal–insulator–semiconductor (MIS) structure is presented. The MIS LEDs exhibit strong yellow emission with a low threshold voltage of 2.7 V. Electroluminescence with a broad emission ranging from 450 nm to 800 nm and a shoulder peak at 700 nm is observed, which is related to the defects and surface states of the CdS nanorods. The influence of the SiO2 shell thickness on the electroluminescence intensity is systematically investigated. The devices have a high light‐emitting spatial resolution of 1.5 μm and maintain an excellent emission property even after shelving at room temperature for at least three months. Moreover, the fabrication process is simple and cost effective and the MIS device could be fabricated on a flexible substrate, which holds great potential for application as a flexible light source. This prototype is expected to open up a new route towards the development of large‐scale light‐emitting devices with excellent attributes, such as high resolution, low cost, and good stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号