首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Carbon‐based nanocomposites have shown promising results in replacing commercial Pt/C as high‐performance, low cost, nonprecious metal‐based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal–air batteries. Herein, a general approach for the production of 1D porous nitrogen‐doped graphitic carbon fibers embedded with active ORR components, (M/MOx, i.e., metal or metal oxide nanoparticles) using a facile two‐step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite–metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N‐doped graphitic carbon fibers, especially Co3O4, exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co3O4 and robust 1D porous structures composed of interconnected N‐doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields.  相似文献   

2.
Active and stable catalysts are highly desired for converting harmful substances (e.g., CO, NOx) in exhaust gases of vehicles into safe gases at low exhaust temperatures. Here, a solvent evaporation–induced co‐assembly process is employed to design ordered mesoporous CexZr1?xO2 (0 ≤ x ≤ 1) solid solutions by using high‐molecular‐weight poly(ethylene oxide)‐block‐polystyrene as the template. The obtained mesoporous CexZr1?xO2 possesses high surface area (60–100 m2 g?1) and large pore size (12–15 nm), enabling its great capacity in stably immobilizing Pt nanoparticles (4.0 nm) without blocking pore channels. The obtained mesoporous Pt/Ce0.8Zr0.2O2 catalyst exhibits superior CO oxidation activity with a very low T100 value of 130 °C (temperature of 100% CO conversion) and excellent stability due to the rich lattice oxygen vacancies in the Ce0.8Zr0.2O2 framework. The simulated catalytic evaluations of CO oxidation combined with various characterizations reveal that the intrinsic high surface oxygen mobility and well‐interconnected pore structure of the mesoporous Pt/Ce0.8Zr0.2O2 catalyst are responsible for the remarkable catalytic efficiency. Additionally, compared with mesoporous Pt/CexZr1?xO2‐s with small pore size (3.8 nm), ordered mesoporous Pt/CexZr1?xO2 not only facilitates the mass diffusion of reactants and products, but also provides abundant anchoring sites for Pt nanoparticles and numerous exposed catalytically active interfaces for efficient heterogeneous catalysis.  相似文献   

3.
Crystalline tungsten trioxide (WO3) thin films covered by noble metal (gold and platinum) nanoparticles are synthesized via wet chemistry and used as optical sensors for gaseous hydrogen. Sensing performances are strongly influenced by the catalyst used, with platinum (Pt) resulting as best. Surprisingly, it is found that gold (Au) can provide remarkable sensing activity that tuned out to be strongly dependent on the nanoparticle size: devices sensitized with smaller nanoparticles display better H2 sensing performance. Computational insight based on density functional theory calculations suggested that this can be related to processes occurring specifically at the Au nanoparticle-WO3 interface (whose extent is in fact dependent on the nanoparticle size), where the hydrogen dissociative adsorption turns out to be possible. While both experiments and calculations single out Pt as better than Au for sensing, the present work reveals how an exquisitely nanoscopic effect can yield unexpected sensing performance for Au on WO3, and how these performances can be tuned by controlling the nanoscale features of the system.  相似文献   

4.
Achieving an improved understanding of catalyst properties, with ability to predict new catalytic materials, is key to overcoming the inherent limitations of metal oxide based gas sensors associated with rather low sensitivity and selectivity, particularly under highly humid conditions. This study introduces newly designed bimetallic nanoparticles (NPs) employing bimetallic Pt‐based NPs (PtM, where M = Pd, Rh, and Ni) via a protein encapsulating route supported on mesoporous WO3 nanofibers. These structures demonstrate unprecedented sensing performance for detecting target biomarkers (even at p.p.b. levels) in highly humid exhaled breath. Sensor arrays are further employed to enable pattern recognition capable of discriminating between simulated biomarkers and controlled breath. The results provide a new class of multicomponent catalytic materials, demonstrating potential for achieving reliable breath analysis sensing.  相似文献   

5.
Developing non‐noble metal catalysts as Pt substitutes, with good activity and stability, remains a great challenge for cost‐effective electrochemical evolution of hydrogen. Herein, carbon‐encapsulated WOx anchored on a carbon support (WOx@C/C) that has remarkable Pt‐like catalytic behavior for the hydrogen evolution reaction (HER) is reported. Theoretical calculations reveal that carbon encapsulation improves the conductivity, acting as an electron acceptor/donor, and also modifies the Gibbs free energy of H* values for different adsorption sites (carbon atoms over the W atom, O atom, W? O bond, and hollow sites). Experimental results confirm that WOx@C/C obtained at 900 °C with 40 wt% metal loading has excellent HER activity regarding its Tafel slope and overpotential at 10 and 60 mA cm?2, and also has outstanding stability at ?50 mV for 18 h. Overall, the results and facile synthesis method offer an exciting avenue for the design of cost‐effective catalysts for scalable hydrogen generation.  相似文献   

6.
A novel catalyst functionalization method, based on protein‐encapsulated metallic nanoparticles (NPs) and their self‐assembly on polystyrene (PS) colloid templates, is used to form catalyst‐loaded porous WO3 nanofibers (NFs). The metallic NPs, composed of Au, Pd, or Pt, are encapsulated within a protein cage, i.e., apoferritin, to form unagglomerated monodispersed particles with diameters of less than 5 nm. The catalytic NPs maintain their nanoscale size, even following high‐temperature heat‐treatment during synthesis, which is attributed to the discrete self‐assembly of NPs on PS colloid templates. In addition, the PS templates generate open pores on the electrospun WO3 NFs, facilitating gas molecule transport into the sensing layers and promoting active surface reactions. As a result, the Au and Pd NP‐loaded porous WO3 NFs show superior sensitivity toward hydrogen sulfide, as evidenced by responses (Rair/Rgas) of 11.1 and 43.5 at 350 °C, respectively. These responses represent 1.8‐ and 7.1‐fold improvements compared to that of dense WO3 NFs (Rair/Rgas = 6.1). Moreover, Pt NP‐loaded porous WO3 NFs exhibit high acetone sensitivity with response of 28.9. These results demonstrate a novel catalyst loading method, in which small NPs are well‐dispersed within the pores of WO3 NFs, that is applicable to high sensitivity breath sensors.  相似文献   

7.
1D core–shell magnetic materials with mesopores in shell are highly desired for biocatalysis, magnetic bioseparation, and bioenrichment and biosensing because of their unique microstructure and morphology. In this study, 1D magnetic mesoporous silica nanochains (Fe3O4@nSiO2@mSiO2 nanochain, Magn‐MSNCs named as FDUcs‐17C) are facilely synthesized via a novel magnetic‐field‐guided interface coassembly approach in two steps. Fe3O4 particles are coated with nonporous silica in a magnetic field to form 1D Fe3O4@nSiO2 nanochains. A further interface coassembly of cetyltrimethylammonium bromide and silica source in water/n‐hexane biliquid system leads to 1D Magn‐MSNCs with core–shell–shell structure, uniform diameter (≈310 nm), large and perpendicular mesopores (7.3 nm), high surface area (317 m2 g?1), and high magnetization (34.9 emu g?1). Under a rotating magnetic field, the nanochains with loaded zoledronate (a medication for treating bone diseases) in the mesopores, show an interesting suppression effect of osteoclasts differentiation, due to their 1D nanostructure that provides a shearing force in dynamic magnetic field to induce sufficient and effective reactions in cells. Moreover, by loading Au nanoparticles in the mesopores, the 1D Fe3O4@nSiO2@mSiO2‐Au nanochains can service as a catalytically active magnetic nanostirrer for hydrogenation of 4‐nitrophenol with high catalytic performance and good magnetic recyclability.  相似文献   

8.
Supported metal nanoparticles (MNPs) undergo severe aggregation, especially when the interaction between MNPs and their supports are limited and weak where their performance deteriorates dramatically. This becomes more severe when catalysts are operated under high temperature. Here, it is reported that MNPs including Pt, Au, Rh, and Ru, with sub‐2 nm size can be stabilized on densely packed defective CeO2 nanoparticles with sub‐5 nm size via strong coupling by direct laser conversion of corresponding metal ions encapsulated cerous metal–organic frameworks (Ce‐MOFs). Ce‐MOF serves as an ideal dispersion precursor to uniformly encapsulate noble metal ions in their orderly arranged pores. Ultrafast laser vaporization and cooling forms uniform, ultrasmall, well‐mixed, and exceptionally dense nanoparticles of metal and metal oxide concurrently. The laser‐induced ultrafast reaction (within tens of nanoseconds) facilitates the precipitation of CeO2 nanoparticles with abundant surficial defects. Due to the well‐mixed ultrasmall Pt and CeO2 components with strong coupling, this catalyst exhibits exceptionally high stability and activity both at low and high temperatures (170–1100 °C) for CO oxidation in long‐term operation, significantly exceeding catalysts prepared by traditional methods. The scalable feature of laser and huge MOF family make it a versatile method for the production of MNP‐based nanocomposites in wide applications.  相似文献   

9.
Rod‐shaped assemblages of Au nanoclusters (AuNCs) can serve as self‐templating solid precursors to produce tubular Au‐based nanocomposites via the coalescence induced by transition metal ions. Specifically, when the AuNC assemblages react with transition metal ions with relatively high standard oxidation potentials such as Cu(II), Ag(I), Pd(II), and Au(III), a series of polycrystalline and ultrathin Au and AuxMy (where M = Cu, Ag, and Pd) alloy hollow nanorods (HNRs) can be obtained with further reduction; these metallic products are evaluated for electrooxidation of methanol. Alternatively, the above transition metal ions‐induced transformations can also be carried out after coating the AuNC assemblages with a layer of mesoporous SiO2 (mSiO2), giving rise to many mSiO2‐coated Au‐based HNRs. Onto the formed AuPd0.18 alloy HNRs, furthermore, a range of transition metal oxides such as TiO2, Co3O4, and Cu2O nanocrystals can be deposited easily to prepare metal oxide–AuPd0.18 HNRs nanocomposites, which can be used as photocatalysts. Compared with those conventional galvanic replacement reactions, the controlled coalescence of AuNCs induced by transition metal ions provides a novel and efficient chemical approach with improved element efficiency to tubular Au‐based nanocomposites.  相似文献   

10.
Yolk–shell nanostructures have received great attention for boosting the performance of lithium‐ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li+ ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co‐doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni2O3, Mn3O4) through combining pyrolysis with an oxidation method is reported herein. The as‐made TMO@BNG exhibits the TMO‐dependent lithium‐ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium‐ion storage capacity of 1554 mA h g?1 at the current density of 96 mA g?1, good rate ability (410 mA h g?1 at 1.75 A g?1), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability.  相似文献   

11.
Developing high‐performance but low‐cost hydrogen evolution reaction (HER) electrocatalysts with superior activity and stability for future sustainable energy conversion technologies is highly desired. Tuning of microstructure, configuration, and chemical composition are paramount to developing effective non‐noble electrocatalysts for HER. Herein, a universal “nanocasting” method is reported to construct graphene decorated with uniform ternary (CoP)x –(FeP)1?x (0 ≤ x ≤ 1) nanorods hybrids with different chemical compositions [(CoP)x –(FeP)1?x –NRs/G] as a highly active and durable nonprecious‐metal electrocatalyst for the HER. The optimized (CoP)0.54–(FeP)0.46–NRs/G electrocatalyst exhibits overpotentials of as low as 57 and 97 mV at 10 mA cm?2, Tafel slopes of 52 and 62 mV dec?1, exchange current densities of 0.489 and 0.454 mA cm?2, and Faradaic efficiency of nearly 100% in acidic and alkaline media, respectively. More importantly, this electrocatalyst also exhibits high tolerance and durability in a wide pH range and keeps catalytic activity for at least 3000 cycles and 24 h of sustained hydrogen production. The excellent catalytic performance of the (CoP)x –(FeP)1?x –NRs/G electrocatalyst may be ascribed to its unique mesoporous structure and strong synergistic effect between CoP and FeP. Thus, the work provides a feasible way to fabricate cheap and highly efficient electrocatalyst as alternatives for Pt‐based electrocatalysts for HER in electrochemical water splitting.  相似文献   

12.
This work reports the template‐free fabrication of mesoporous Al2O3 nanospheres with greatly enhanced textural characteristics through a newly developed post‐synthesis “water‐ethanol” treatment of aluminium glycerate nanospheres followed by high temperature calcination. The proposed “water‐ethanol” treatment is highly advantageous as the resulting mesoporous Al2O3 nanospheres exhibit 2–4 times higher surface area (up to 251 m2 g?1), narrower pore size distribution, and significantly lower crystallization temperature than those obtained without any post‐synthesis treatment. To demonstrate the generality of the proposed strategy, a nearly identical post‐synthesis “water treatment” method is successfully used to prepare mesoporous monometallic (e.g., manganese oxide (MnO2)) and bimetallic oxide (e.g., CuCo2O4 and MnCo2O4) nanospheres assembled of nanosheets or nanoplates with highly enhanced textural characteristics from the corresponding monometallic and bimetallic glycerate nanospheres, respectively. When evaluated as molybdenum (Mo) adsorbents for potential use in molybdenum‐99/technetium‐99m (99Mo/99mTc) generators, the treated mesoporous Al2O3 nanospheres display higher molybdenum adsorption performance than non‐treated Al2O3 nanospheres and commercial Al2O3, thereby suggesting the effectiveness of the proposed strategy for improving the functional performance of oxide materials. It is expected that the proposed method can be utilized to prepare other mesoporous metal oxides with enhanced textural characteristics and functional performance.  相似文献   

13.
Ammonia synthesis is one of the most kinetically complex and energetically challenging chemical processes in industry and has used the Harber–Bosch catalyst for over a century, which is processed under both harsh pressure (150–350 atm) and hightemperature (623–823 K), wherein the energy and capital intensive Harber–Bosch process has a huge energy cost accounting for about 1%–3% of human's energy consumption. Therefore, there has been a rough and vigorous exploration to find an environmentally benign alternative process. As the amorphous material is in a metastable state and has many “dangling bonds”, it is more active than the crystallized one. In this paper, CeOx ‐induced amorphization of Au nanoparticles anchored on reduced graphite oxide (a‐Au/CeOx –RGO) has been achieved by a facile coreduction method under ambient atmosphere. As a proof‐of‐concept experiment, a‐Au/CeOx –RGO hybrid catalyst containing the low noble metal (Au loading is 1.31 wt%) achieves a high Faradaic efficiency (10.10%) and ammonia yield (8.3 μg h?1 mg?1cat.) at ?0.2 V versus RHE, which is significantly higher than that of the crystalline counterpart (c‐Au/RGO), and even comparable to the yields and efficiencies under harsh temperatures and/or pressures.  相似文献   

14.
Design and synthesis of ordered, metal‐free layered materials is intrinsically difficult due to the limitations of vapor deposition processes that are used in their making. Mixed‐dimensional (2D/3D) metal‐free van der Waals (vdW) heterostructures based on triazine (C3N3) linkers grow as large area, transparent yellow‐orange membranes on copper surfaces from solution. The membranes have an indirect band gap (E g,opt = 1.91 eV, E g,elec = 1.84 eV) and are moderately porous (124 m2 g?1). The material consists of a crystalline 2D phase that is fully sp2 hybridized and provides structural stability, and an amorphous, porous phase with mixed sp2–sp hybridization. Interestingly, this 2D/3D vdW heterostructure grows in a twinned mechanism from a one‐pot reaction mixture: unprecedented for metal‐free frameworks and a direct consequence of on‐catalyst synthesis. Thanks to the efficient type I heterojunction, electron transfer processes are fundamentally improved and hence, the material is capable of metal‐free, light‐induced hydrogen evolution from water without the need for a noble metal cocatalyst (34 µmol h?1 g?1 without Pt). The results highlight that twinned growth mechanisms are observed in the realm of “wet” chemistry, and that they can be used to fabricate otherwise challenging 2D/3D vdW heterostructures with composite properties.  相似文献   

15.
The highly oxidative operating conditions of rechargeable zinc–air batteries causes significant carbon‐support corrosion of bifunctional oxygen electrocatalysts. Here, a new strategy for the catalyst support design focusing on oxygen vacancy (OV)‐rich, low‐bandgap semiconductor is proposed. The OVs promote the electrical conductivity of the oxide support, and at the same time offer a strong metal–support interaction (SMSI), which enables the catalysts to have small metal size, high catalytic activity, and high stability. The strategy is demonstrated by successfully synthesizing ultrafine Co‐metal‐decorated 3D ordered macroporous titanium oxynitride (3DOM‐Co@TiOxNy). The 3DOM‐Co@TiOxNy catalyst exhibits comparable activities for oxygen reduction and evolution reactions, but much higher cycling stability than noble metals in alkaline conditions. The zinc–air battery using this catalyst delivers an excellent stability with less than 1% energy efficiency loss over 900 charge–discharge cycles at 20 mA cm?2. The high stability is attributed to the strong SMSI between Co and 3DOM‐TiOxNy which is verified by density functional theory calculations. This work sheds light on using OV‐rich semiconductors as a promising support to design efficient and durable nonprecious electrocatalysts.  相似文献   

16.
Complex multiphase nanocomposite designs present enormous opportunities for developing next‐generation integrated photonic and electronic devices. Here, a unique three‐phase nanostructure combining a ferroelectric BaTiO3, a wide‐bandgap semiconductor of ZnO, and a plasmonic metal of Au toward multifunctionalities is demonstrated. By a novel two‐step templated growth, a highly ordered Au–BaTiO3–ZnO nanocomposite in a unique “nanoman”‐like form, i.e., self‐assembled ZnO nanopillars and Au nanopillars in a BaTiO3 matrix, is realized, and is very different from the random three‐phase ones with randomly arranged Au nanoparticles and ZnO nanopillars in the BaTiO3 matrix. The ordered three‐phase “nanoman”‐like structure provides unique functionalities such as obvious hyperbolic dispersion in the visible and near‐infrared regime enabled by the highly anisotropic nanostructures compared to other random structures. Such a self‐assembled and ordered three‐phase nanocomposite is obtained through a combination of vapor–liquid–solid (VLS) and two‐phase epitaxy growth mechanisms. The study opens up new possibilities in the design, growth, and application of multiphase structures and provides a new approach to engineer the ordering of complex nanocomposite systems with unprecedented control over electron–light–matter interactions at the nanoscale.  相似文献   

17.
A novel polymer encapsulation strategy to synthesize metal isolated‐single‐atomic‐site (ISAS) catalysts supported by porous nitrogen‐doped carbon nanospheres is reported. First, metal precursors are encapsulated in situ by polymers through polymerization; then, metal ISASs are created within the polymer‐derived p‐CN nanospheres by controlled pyrolysis at high temperature (200–900 °C). Transmission electron microscopy and N2 sorption results reveal this material to exhibit a nanospheric morphology, a high surface area (≈380 m2 g?1), and a porous structure (with micropores and mesopores). Characterization by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure confirms the metal to be present as metal ISASs. This methodology is applicable to both noble and nonprecious metals (M‐ISAS/p‐CN, M = Co, Ni, Cu, Mn, Pd, etc.). In particular, the Co‐ISAS/p‐CN nanospheres obtained using this method show comparable (E1/2 = 0.838 V) electrochemical oxygen reduction activity to commercial Pt/C with 20 wt% Pt loading (E1/2 = 0.834 V) in alkaline media, superior methanol tolerance, and outstanding stability, even after 5000 cycles.  相似文献   

18.
A facile approach for the synthesis of Au‐ and Pt‐decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated. A single surfactant (oleylamine) is used to prepare such heterostructured noble metal decorated CIS NCs from the pristine CIS. Such a feasible way to synthesize heterostructured noble metal decorated CIS NCs from the single surfactant can stimulate the development of the functionalized heterostructured NCs in large scale for practical applications such as solar cells and photodetectors. Photodetectors based on MoS2 bilayers with the synthesized nanocrystals display enhanced photocurrent, almost 20–40 times higher responsivity and the On/Off ratio is enlarged one order of magnitude compared with the pristine MoS2 bilayers‐based photodetectors. Remarkably, by using Pt‐ or Au‐decorated CIS NCs, the photocurrent enhancement of MoS2 photodetectors can be tuned between blue (405 nm) to green (532 nm). The strategy described here acts as a perspective to significantly improve the performance of MoS2‐based photodetectors with the controllable absorption wavelengths in the visible light range, showing the feasibility of the possible color detection.  相似文献   

19.
The exploitation of photocatalysts that harvest solar spectrum as broad as possible remains a high‐priority target yet grand challenge. In this work, for the first time, metal–organic framework (MOF) composites are rationally fabricated to achieve broadband spectral response from UV to near‐infrared (NIR) region. In the core–shell structured upconversion nanoparticles (UCNPs)‐Pt@MOF/Au composites, the MOF is responsive to UV and a bit visible light, the plasmonic Au nanoparticles (NPs) accept visible light, whereas the UCNPs absorb NIR light to emit UV and visible light that are harvested by the MOF and Au once again. Moreover, the MOF not only facilitates the generation of “bare and clean” Au NPs on its surface and realizes the spatial separation for the Au and Pt NPs, but also provides necessary access for catalytic substrates/products to Pt active sites. As a result, the optimized composite exhibits excellent photocatalytic hydrogen production activity (280 µmol g?1 h?1) under simulated solar light, and the involved mechanism of photocatalytic H2 production under UV, visible, and NIR irradiation is elucidated. Reportedly, this is an extremely rare study on photocatalytic H2 production by light harvesting in all UV, visible, and NIR regions.  相似文献   

20.
Quasi‐1D cadmium chalcogenide quantum rods (QRs) are benchmark semiconductor materials that are combined with noble metals to constitute QR heterostructures for efficient photocatalysis. However, the high toxicity of cadmium and cost of noble metals are the main obstacles to their widespread use. Herein, a facile colloidal synthetic approach is reported that leads to the spontaneous formation of cadmium‐free alloyed ZnSxSe1?x QRs from polydisperse ZnSe nanowires by alkylthiol etching. The obtained non‐noble‐metal ZnSxSe1?x QRs can not only be directly adopted as efficient photocatalysts for water oxidation, showing a striking oxygen evolution capability of 3000 µmol g?1 h?1, but also be utilized to prepare QR‐sensitized TiO2 photoanodes which present enhanced photo‐electrochemical (PEC) activity. Density functional theory (DFT) simulations reveal that alloyed ZnSxSe1?x QRs have highly active Zn sites on the (100) surface and reduced energy barrier for oxygen evolution, which in turn, are beneficial to their outstanding photocatalytic and PEC activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号