首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究钢支撑对钢框架结构抗连续倒塌鲁棒性的影响,制作了两个1/2缩尺的二层钢框架子结构,其中一个框架布置钢支撑,另一个为纯框架。试验采用位移控制的Pushdown加载方式,对多层钢框架的抗力机制、内力变化以及破坏模式进行研究。试验结果表明:布置钢支撑后,钢框架子结构的初始刚度和极限荷载分别提升129.7%和45.1%,明显提高了钢结构抗连续倒塌的鲁棒性;由于受压支撑在加载初期就开始发生局部屈曲,较早失去承载能力,钢支撑的抗力贡献主要由受拉支撑提供。通过有限元分析软件ANSYS/LS-DYNA进一步研究了钢支撑布置位置及其截面尺寸对钢框架抗连续倒塌性能的影响,分析结果表明:增大钢支撑的截面尺寸可以明显提高钢框架的承载力,但会降低其变形能力;将钢支撑布置于失效柱上层或顶层时对钢框架的加固效果较好;由于去柱楼层的不确定,建议将钢支撑布置于顶层对框架抗倒塌更为有利。  相似文献   

2.
个别结构构件的失效对社会造成损失,而构件的连续失效会引起结构整体倒塌带来的更大甚至巨大的损失.因此,加强现有工程结构的抗连续倒塌能力势在必行.本文提出了一种在现有结构的顶部增设空间桁架能有效提高原结构的抗连续倒塌性能的方法.以GSA2003为基准,采用SAP2000有限元软件对增设桁架前后两种结构的抗连续倒塌性能进行了分析,得出该方法是一种能够加固并改善现有结构抗连续倒塌能力的有效方法.  相似文献   

3.
Steel bracing is able to improve progressive collapse resistance of reinforced concrete (RC) frames, but the bracing design is typically based on seismic retrofitting or lateral stability. There is no approach for design of steel bracing against progressive collapse. To this end, a retrofitting approach with steel braces is proposed based on analysis of macro finite element (FE) models with fiber beam elements. The FE models were initially validated through the experimental results of a braced frame and then used to investigate the effects of pertinent parameters on the progressive collapse resistance of planar frames. The results suggest the braces should be placed at the top story. Thereafter, macro FE models are built to investigate the dynamic responses of the three‐dimensional prototype RC frames under different column removal scenarios (CRS) and show the necessity of retrofitting. Accordingly, the design approach of steel bracing is proposed with incremental dynamic analysis (IDA) and assuming independent contribution of braces and frames to resistance. Finally, the fragility analysis of the frames under a corner‐penultimate‐exterior CRS is conducted through IDA and Monte Carlo simulation, and the results confirm the validity of the proposed design approach for retrofitting RC frames.  相似文献   

4.
以某医院的超长复杂隔震结构为工程背景,对超长复杂隔震结构进行了抗连续倒塌研究。运用非线性有限元软件建立考虑楼板作用的精细三维模型和未考虑楼板作用的简化三维模型,通过非线性动力拆除构件法对两种模型进行了分析,对比两种模型的抗倒塌能力。结果表明:该超长复杂隔震结构仅拆除1根柱时,结构未发生连续倒塌,且角柱对该隔震结构的连续倒塌影响较大|拆除2根柱时,未考虑楼板作用的简化三维模型发生了连续倒塌,而考虑楼板作用的精细三维模型未发生连续倒塌。因此,不考虑楼板作用的简化三维模型计算结果会偏于保守,进行结构抗连续倒塌时需考虑楼板的影响。  相似文献   

5.
王伟  秦希 《建筑结构学报》2016,37(6):123-130
以方钢管柱隔板贯通式节点为研究对象,为提高其抗连续倒塌性能,提出了采用改进型全螺栓连接和加固型栓焊连接的钢框架梁柱刚性节点设计方法。通过试验及有限元模拟分析,考察不同连接构造的节点在中柱失效工况下的性能。结果表明:改进型全螺栓连接构造能够延缓下翼缘断裂,使节点子结构在更大的变形下保持传力截面的完整性,弯曲机制和悬索机制提供的抗力能同时发展至较大的值;加固型栓焊连接构造保证下翼缘连接板件在焊接连接失效后继续有效传力,且使螺栓孔壁局部承压塑性破坏优先发生,传力截面在更大的变形下能保持其完整性,梁端轴力可达到全截面轴拉屈服承载力,悬索机制提供的抗力可充分发展。因此,改进型全螺栓连接构造与加固型栓焊连接构造可提高结构的抗连续倒塌能力,验证了设计方法的可行性。  相似文献   

6.
Influences of building height and seismicity level on progressive collapse resistance of buildings are investigated in this paper. For the height, 4‐story, 8‐story and 12‐story steel special moment resisting frames are focused. The obtained results indicate that taller buildings are safer against progressive collapse. To study the influence of seismicity level, different four‐story structures having special moment resisting frame systems are designed for different levels of seismicity, namely, very high, high, moderate and low. The structures are evaluated, using nonlinear dynamic method and two main scenarios of the codes, including sudden removal of a corner and a middle column in the first floor. Some graphs are presented for progressive collapse resistance of the structures, depending on their seismic base shears. It is shown that the structures designed for greater seismic base shears are more resistant against progressive collapse. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper deals with the progressive collapse analysis of a tall steel frame following the removal of a corner column according to the alternate load path approach. Several analysis techniques are considered (eigenvalue, material nonlinearities, material and geometric nonlinearities), as well as 2D and 3D modelling of the structural system. It is determined that the collapse mechanism is a loss-of-stability-induced one that can be identified by combining a 3D structural model with an analysis involving both material and geometric nonlinearities. The progressive collapse analysis reveals that after the initial removal of a corner column, its two adjacent columns fail from elastic flexural-torsional buckling at a load lower than the design load. The failure of these two columns is immediately followed by the failure of the next two adjacent columns from elastic flexural–torsional buckling. After the failure of these five columns, the entire structure collapses without the occurrence of any significant plastification. The main contribution is the identification of buckling-induced collapse mechanisms in steel frames involving sequential buckling of multiple columns. This is a type of failure mechanism that has not received appropriate attention because it practically never occurs in properly designed structures without the accidental loss of a column.  相似文献   

8.
基于拆除构件法,通过显式动力有限元分析,对复杂高层钢结构待拆构件的选择、构件失效的模拟方法以及构件损伤评价标准的制定等关键技术进行了研究。结果表明:对于高层钢结构,竖向构件的敏感性可基本反映待拆构件的重要性,水平构件的敏感性可反映剩余结构发挥抗倒塌机制的储备大小。此外,还建立了基于美国性能化设计评估方法FEMA 356纤维模型的构件失效模拟方法,可使构件在动力响应过程中的失效破坏既满足FEMA 356构件变形极限又满足材料应变极限,同时还可依据FEMA 356中的构件性能水准与微观应变的对应关系评价剩余结构构件的损伤程度。运用该方法对案例工程钢结构的抗连续倒塌能力进行分析,结果表明:关键构件拆除后,结构未发生连续性倒塌,剩余结构能够形成有效的承载替代路径;大部分构件的塑性转角未达到IO水准,发生较大塑性变形的构件主要集中在替代路径的承载构件上。  相似文献   

9.
In this study the progressive collapse-resisting capacity of steel moment resisting frames was investigated using alternate path methods recommended in the GSA and DoD guidelines. The linear static and nonlinear dynamic analysis procedures were carried out for comparison. It was observed that, compared with the linear analysis results, the nonlinear dynamic analysis provided larger structural responses and the results varied more significantly depending on the variables such as applied load, location of column removal, or number of building story. However the linear procedure provided more conservative decision for progressive collapse potential of model structures. As the nonlinear dynamic analysis for progressive collapse analysis does not require modeling of complicated hysteretic behavior, it may be used as more precise and practical tool for evaluation of progressive collapse potential of building structures.  相似文献   

10.
In this study, two nonlinear analysis methods are proposed that can be used for a simplified but accurate evaluation of progressive collapse potential in welded steel moment frames. To this end, the load-resisting mechanism of the column-removed double-span beams in welded steel moment frames was first investigated based on material and geometric nonlinear parametric finite element analysis. A simplified tri-linear model for the vertical resistance versus chord rotation relationship of the double-span beams was developed. The application of the developed model to energy-based nonlinear static progressive collapse analysis was then proposed. The relationship between the gravity loading and the maximum dynamic chord rotation or the concept of collapse spectrum was also established for a quick assessment of the maximum deformation demands.  相似文献   

11.
节点连接的破坏和失效显著影响装配整体式混凝土框架结构在连续倒塌大变形下的抗力机理、破坏模式和变形能力。为研究装配整体式混凝土框架结构的抗连续倒塌性能,设计了3个1/3缩尺的两跨梁柱子结构试件,开展了拟均布加载下的静力连续倒塌试验和理论计算分析。包含1个现浇对比试件RC和2个采用不同梁柱纵筋连接方式的装配整体式试件PC,即梁钢筋通过机械套筒连接和锚固板锚固、柱钢筋通过半灌浆套筒连接的试件,梁钢筋通过90°弯折锚固、柱钢筋通过约束浆锚连接的试件。试验发现:由于后浇区混凝土强度的提高,装配整体式试件的压拱机制峰值荷载较现浇对比试件分别提高22.9%和20.2%;拟均布加载下,梁最终变形呈曲线,该变形模式下节点需要提供更高的转动能力才能保证梁整体变形满足T/CECS 392—2021《建筑结构抗倒塌设计标准》的挠度要求;在悬链线峰值荷载时相邻跨梁提供的水平约束能有效限制边柱的水平变形和装配式试件的坐浆层滑移。理论计算表明,装配整体式试件的压拱作用的倒塌抗力贡献率低于现浇对比试件,其原因是边柱坐浆层滑移削弱了梁端约束,进而降低了压拱机制承载力。采用能量原理评估了试件的动力倒塌抗力,由于压拱机制下的累积耗能能力较高,装配整体式试件的动力倒塌抗力分别比现浇试件提高了16.8%和18.8%。  相似文献   

12.
Displacement-restraint bracing for seismic retrofit of steel moment frames   总被引:2,自引:0,他引:2  
This paper presents a seismic retrofit method using wire rope (cable) bracing for steel moment-resisting frames. The retrofitted frame using the proposed bracing system exhibits ductile behavior and maintains seismic energy dissipation capacity to the same extent as the original bare frame. The bracing member does not act for small and medium vibration amplitudes. For large vibration amplitudes, the bracing member acts and restrains unacceptably large story drift. This retrofit method prevents an increase in the column compression force resulting from the brace action. Cyclic loading test results of the portal frames reveal fundamental characteristics of the proposed bracing system. Seismic response analyses are also conducted for the three-story moment-resisting frames. The effectiveness of the retrofit method is discussed in light of these test and analysis results.  相似文献   

13.
偶然事件下框架结构抗连续倒塌分析   总被引:4,自引:0,他引:4  
戴高乐机场发生坍塌事故后,结构体系局部发生破坏后对整体结构的影响程度愈来愈受到结构工程师的关注。本文作者研究了偶然事件对框架结构的影响特点,分析了框架结构在偶然作用下的破坏规律,以此确定采用备用荷载路径方法和局部抵抗特殊偶然作用法分析框架结构抗连续倒塌能力的具体操作方法。  相似文献   

14.
In this study, the effects of in‐cycle strength degradation of steel moment connections are investigated on global behavior of multiple degree‐of‐freedom structures. Two types of degrading connection models are defined and compared with a bilinear non‐degrading model. Due to dispersion of the experimental test results on connections performance, two models are considered for each type. A probability assessment is carried out by implementation of incremental dynamic analysis to find the capacity of the structures for various performance levels. A sensitivity study is conducted on hysteresis parameters of connection models to investigate the effect of these parameters on global behavior of the structures. Due to increased dispersion of displacement demands observed in degrading cases, a reliability analysis is carried out to consider the effect of uncertainty on confidence level of the structures. Results show that in‐cycle strength degradation can lead to abrupt dynamic instability and as a consequence decrease in reliability of the system against collapse. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
张微敬  何静 《建筑结构学报》2021,42(Z1):213-219
索穹顶结构冗余度低,关键构件的破坏可能会引起结构连续倒塌。为了解索穹顶结构的抗倒塌性能,并找出影响该结构体系抗连续倒塌性能的关键构件,采用拆除构件法对跨度6 m的Geiger型索穹顶结构模型进行了抗连续倒塌试验研究。结果表明:单根构件破断后,除个别构件外,其他大多数构件的内力均减小;不同工况下,产生最大竖向位移的节点随破断构件的位置不同而不同,单根构件破断引起的结构最大竖向位移为跨度的1/14;影响索穹顶结构抗连续倒塌性能的关键构件是环索及外斜索;对于同类型构件,构件失效位置对结构抗倒塌性能的影响由内向外依次增大;保证外圈环索不失效是索穹顶结构抗倒塌的关键。  相似文献   

16.
17.
In this paper, the seismic behavior of dual structural systems in forms of steel moment‐resisting frames accompanied with reinforced concrete shear walls and steel moment‐resisting frames accompanied with concentrically braced frames, have been studied. The nonlinear behavior of the mentioned structural systems has been evaluated as, in earthquakes, structures usually enter into an inelastic behavior stage and, hence, the applied energy to the structures will be dissipated. As a result, some parameters such as ductility factor of structure (μ), over‐strength factor (Rs) and response modification factor (R) for the mentioned structures have been under assessment. To achieve these objectives, 30‐story buildings containing such structural systems were used to perform the pushover analyses having different load patterns. Analytical results show that the steel moment‐resisting frames accompanied with reinforced concrete shear walls system has higher ductility and response modification factor than the other one, and so, it is observed to achieve suitable seismic performance; using the first system can have more advantages than the second one. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The design of steel structures, in most cases, depends majorly on the level of wind loads which are prescribed by codes and regulations and are used in the structural analysis due to the fact that steel structures being light and ductile systems are strongly affected from a slight difference in the values of wind loading. During the last decades, disproportionate collapse analysis has become of major interest mainly due to the increasing number of failures occurring in that pattern. Commonly accepted guidelines and methods of analysis have been produced, the most dominating of which being the Department of Defense Facilities criteria or DoD. In the DoD, as well as in other criteria, the event of a column loss is suggested as the modeling scenario which has to be sustained by a structural system in order to be robust. However, all the guidelines so far have disconnected the column loss analysis from wind loads and have only performed it for gravity loading. This paper presents the dynamic time history disproportionate collapse analysis of steel frames, including various levels of wind loading. Interesting aspects are discussed through the parametric analysis of five different numerical examples of moment resisting frames.  相似文献   

19.
In this paper, the effect of viscous dampers on reducing progressive collapse potential of steel moment frames was evaluated by nonlinear dynamic analysis. Parametric studies were conducted first to evaluate the effects of dampers installed in a steel beam‐column subassembly with varying natural period and yield strength on the reduction of progressive collapse potential. Then 15‐story moment‐resisting frames with three different span lengths were designed with and without viscous dampers, and the effect of viscous dampers was investigated by nonlinear dynamic analysis. According to the parametric study, the vertical displacement generally decreased as the damping ratio of the system increased, and the dampers were effective in both the elastic and the elasto‐plastic systems. It was also observed that the effect of the damper increased as the natural period of the structure increased and the strength ratio decreased. The analysis results of 15‐story analysis model structures showed that the viscous dampers, originally designed to reduce earthquake‐induced vibration, were effective in reducing vertical displacement of the structures caused by sudden removal of a first‐story column, and the effect was more predominant in the structure with longer span length. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
通过建立典型钢框架的连续倒塌分析数值模型,使用拉丁超立方抽样方法抽取随机样本进行可靠度分析,考虑结构参数的不确定性影响,确定完好结构在地震作用下发生局部损坏的概率。以大震作用下可靠度指标最小的构件作为结构的失效构件,基于整体可靠度方法,采用拆除构件法对失效构件进行拆除并施加地震荷载进行分析,得到不同失效模式下受损结构发生连续倒塌条件可靠度指标和失效概率。最后结合失效构件的失效概率,研究结构在地震作用下的连续倒塌全概率可靠度。研究表明,运用可靠度理论对钢框架结构进行连续倒塌可靠度分析,可以直观地得到地震作用下钢框架结构发生连续倒塌的概率,为准确评价钢框架结构在地震作用下的抗连续倒塌能力提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号