首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Tuning energy levels plays a crucial role in developing cost‐effective, earth‐abundant, and highly active oxygen evolution catalysts. However, to date, little attention has been paid to the effect of using heteroatom‐occupied lattice sites on the energy level to engineer electrocatalytic activity. In order to explore heteroatom‐engineered energy levels of spinel Co3O4 for highly‐effective oxygen electrocatalysts, herein Al atoms are directly introduced into the crystal lattice by occupying the Co2+ ions in the tetrahedral sites and Co3+ ions in the octahedral sites (denoted as Co2+Td and Co3+Oh, respectively). Experimental and theoretical simulations demonstrate that Al3+ ions substituting Co2+Td and Co3+Oh active sites, especially Al3+ ions occupying the Co2+Td sites, optimizes the adsorption, activation, and desorption features of intermediate species during oxygen evolution reaction (OER) processes. As a result, the optimized Co1.75Al1.25O4 nanosheet exhibit unprecedented OER activity with an ultralow overpotential of 248 mV to deliver a current of 10 mA cm–2, among the best Co‐based OER electrocatalysts. This work should not only provide fundamental understanding of the effect of Al‐occupied different Co sites in Co3–xAlxO4 composites on OER performance, but also inspire the design of low‐cost, earth‐abundant, and high‐active electrocatalysts toward water oxidation.  相似文献   

2.
Thermoelectrically active and stable perovskite‐type materials e.g. La1–xCaxCoO3 (0<x<0.4), La1–xCaxCo0.99Ti0.01O3 (0<x<0.2), and Ca3Co4O9 have been successfully synthesized using selected precursor compounds. This soft chemistry route allows the control of the elemental composition from 1% level to 50% substitution. Accordingly the Co valency and therefore the transport properties of the product phases can be controlled. It has been found that the pH of the precursor solution results in a pronounced influence on the morphology of the products. The thermoelectric values measured of the nanostructured “misfit cobaltite Ca3Co4O9” shows a Seebeck coefficient of S300K ~ + 123 μVK–1, and a resistivity of ρ ~ 1.9 mΩ cm at room temperature, which is comparable to the reported value for single crystals. Ca‐ and Ti‐substituted LaCoO3 reveal thermopower values in the range from S300K ~ + 70 to + 180 μVK–1. The electrical conductivity of the nanostructured compounds is high in spite of the fact that the grain boundary influence is increasing. The Seebeck coefficient values of the products are positive in the whole temperature range indicating p‐type conduction.  相似文献   

3.
Electrochemical water splitting is a promising method for storing light/electrical energy in the form of H2 fuel; however, it is limited by the sluggish anodic oxygen evolution reaction (OER). To improve the accessibility of H2 production, it is necessary to develop an efficient OER catalyst with large surface area, abundant active sites, and good stability, through a low‐cost fabrication route. Herein, a facile solution reduction method using NaBH4 as a reductant is developed to prepare iron‐cobalt oxide nanosheets (Fex Coy ‐ONSs) with a large specific surface area (up to 261.1 m2 g?1), ultrathin thickness (1.2 nm), and, importantly, abundant oxygen vacancies. The mass activity of Fe1Co1‐ONS measured at an overpotential of 350 mV reaches up to 54.9 A g?1, while its Tafel slope is 36.8 mV dec?1; both of which are superior to those of commercial RuO2, crystalline Fe1Co1‐ONP, and most reported OER catalysts. The excellent OER catalytic activity of Fe1Co1‐ONS can be attributed to its specific structure, e.g., ultrathin nanosheets that could facilitate mass diffusion/transport of OH? ions and provide more active sites for OER catalysis, and oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2O onto nearby Co3+ sites.  相似文献   

4.
Searching for highly efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) using nonnoble metal‐based catalysts is essential for the development of many energy conversion systems, including rechargeable fuel cells and metal–air batteries. Here, Co9–xFexS8/Co,Fe‐N‐C hybrids wrapped by reduced graphene oxide (rGO) (abbreviated as S‐Co9–xFexS8@rGO) are synthesized through a semivulcanization and calcination method using graphene oxide (GO) wrapped bimetallic zeolite imidazolate framework (ZIF) Co,Fe‐ZIF (CoFe‐ZIF@GO) as precursors. Benefiting from the synergistic effect of OER active CoFeS and ORR active Co,Fe‐N‐C in a single component, as well as high dispersity and enhanced conductivity derived from rGO coating and Fe‐doping, the obtained S‐Co9–xFexS8@rGO‐10 catalyst shows an ultrasmall overpotential of ≈0.29 V at 10 mA cm?2 in OER and a half‐wave potential of 0.84 V in ORR, combining a superior oxygen electrode activity of ≈0.68 V in 0.1 m KOH.  相似文献   

5.
The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core–shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one‐step synthetic route is reported to prepare hexagonal nanosandwich‐shaped Ni@Ru core–shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core–shell nanoparticles with tunable core compositions (Ni3Cox@Ru HNS). Core–shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru4+) species, which can be modulated by the core compositions.  相似文献   

6.
The magnetic susceptibility of Nd2O3, NdCo1 + x O3, and LaCo1 + x O3 (x = 0, 0.05, 0.1, 0.15) has been measured at temperatures from 80 to 950 K, and the electrical conductivity of the neodymium and lanthanum cobaltites (enriched in cobalt relative to neodymium or lanthanum) with the general formulas Nd(La)Co1 + x O3 + 1.5x , or Nd1/(1 + x)(La)1/(1 + x)CoO(3 + 1.5x)/(1 + x), has been measured between 300 and 1050 K. The effective magnetic moments of paramagnetic ions have been determined in the temperature ranges of CurieWeiss behavior and have been used to evaluate the fractions of low-, intermediate-, and high-spin Co3+ ions. Raising the temperature from 320 to 660 K (non-Curie—Weiss behavior) increases the fraction of high-spin Co3+ ions in LaCo1 + x O3 + 1.5x (La1/(1 + x)CoO(3 + 1.5x)/(1 + x) from 27–43 to 56–61%. Moreover, in this temperature range the conductivity of the lanthanum cobaltites rises most steeply. In the range 660–950 K, no spin transition occurs in LaCo1 + x O3 + 1.5x , the slope of the conductivity versus temperature curves gradually decreases, and the conductivity gradually saturates. The conductivity of NdCo1 + x O3 + 1.5x (Nd1/(1 + x)CoO(3 + 1.5x)/(1 + x)) varies considerably in the range 550–950 K, and the spin transition in these cobaltites takes place between 260 and 760 K. Above 760 K, the NdCo1 + x O3 + 1.5x cobaltites with x = 0.05 and 0.10 contain, respectively, 72 and 83% high-spin Co3+ ions and 28 and 17% high-spin Co4+ ions, whereas neodymium cobaltite with x = 0.15 contains 83% high-spin and 17% intermediate-spin Co3+ ions. Original Russian Text ? S.V. Shevchenko, L.A. Bashkirov, G.S. Petrov, S.S. Dorofeichik, N.N. Lubinskii, 2008, published in Neorganicheskie Materialy, 2008, Vol. 44, No. 1, pp. 88–94.  相似文献   

7.
Tailoring composition and morphology of electrocatalysts is of great importance in improving their catalytic performance. Herein, a salt‐templated strategy is proposed to construct novel multicomponent Co/CoxMy (M = P, N) hybrids with outstanding electrocatalytic performance for the oxygen evolution reaction (OER). The obtained Co/CoxMy hybrids present porous sheet‐like architecture consisting of many hierarchical secondary building‐units. The synthetic strategy depends on a facile and effective dissolution–recrystallization–pyrolysis process under NH3 atmosphere of the precursors, which does not involve any surfactant or long‐time hydrothermal pretreatment. That is different from the conventional methods for the synthesis of hierarchical nitrides/phosphides. Benefitting from unique composition/structure‐dependent merits, the Co/CoxMy hybrids as a typical Mott–Schottky electrocatalyst exhibit good OER performance in an alkaline medium compared with their counterparts, as evidenced by a low overpotential of 334 mV at 10 mA cm?2 and a small Tafel slope of 79.2 mV dec?1, as well as superior long‐term stability. More importantly, the Co/CoxMy+Pt/C achieves higher voltaic efficiency and several times longer cycle life than conventional RuO2+Pt/C catalysts in rechargeable Zn–air batteries. It is envisioned that the present work can provide a new avenue for the development of Mott–Schottky electrocatalysts for sustainable energy storage.  相似文献   

8.
The oxygen evolution reaction (OER) is pivotal in multiple gas‐involved energy conversion technologies, such as water splitting, rechargeable metal–air batteries, and CO2/N2 electrolysis. Emerging anion‐redox chemistry provides exciting opportunities for boosting catalytic activity, and thus mastering lattice‐oxygen activation of metal oxides and identifying the origins are crucial for the development of advanced catalysts. Here, a strategy to activate surface lattice‐oxygen sites for OER catalysis via constructing a Ruddlesden–Popper/perovskite hybrid, which is prepared by a facile one‐pot self‐assembly method, is developed. As a proof‐of‐concept, the unique hybrid catalyst (RP/P‐LSCF) consists of a dominated Ruddlesden–Popper phase LaSr3Co1.5Fe1.5O10‐δ (RP‐LSCF) and second perovskite phase La0.25Sr0.75Co0.5Fe0.5O3‐δ (P‐LSCF), displaying exceptional OER activity. The RP/P‐LSCF achieves 10 mA cm?2 at a low overpotential of only 324 mV in 0.1 m KOH, surpassing the benchmark RuO2 and various state‐of‐the‐art metal oxides ever reported for OER, while showing significantly higher activity and stability than single RP‐LSCF oxide. The high catalytic performance for RP/P‐LSCF is attributed to the strong metal–oxygen covalency and high oxygen‐ion diffusion rate resulting from the phase mixture, which likely triggers the surface lattice‐oxygen activation to participate in OER. The success of Ruddlesden–Popper/perovskite hybrid construction creates a new direction to design advanced catalysts for various energy applications.  相似文献   

9.
Cobalt‐containing spinel oxides are promising electrocatalysts for the oxygen evolution reaction (OER) owing to their remarkable activity and durability. However, the activity still needs further improvement and related fundamentals remain untouched. The fact that spinel oxides tend to form cation deficiencies can differentiate their electrocatalysis from other oxide materials, for example, the most studied oxygen‐deficient perovskites. Here, a systematic study of spinel ZnFexCo2?xO4 oxides (x = 0–2.0) toward the OER is presented and a highly active catalyst superior to benchmark IrO2 is developed. The distinctive OER activity is found to be dominated by the metal–oxygen covalency and an enlarged Co?O covalency by 10–30 at% Fe substitution is responsible for the activity enhancement. While the pH‐dependent OER activity of ZnFe0.4Co1.6O4 (the optimal one) indicates decoupled proton–electron transfers during the OER, the involvement of lattice oxygen is not considered as a favorable route because of the downshifted O p‐band center relative to Fermi level governed by the spinel's cation deficient nature.  相似文献   

10.
Cobalt‐containing spinel oxides are promising electrocatalysts for the oxygen evolution reaction (OER) owing to their remarkable activity and durability. However, the activity still needs further improvement and related fundamentals remain untouched. The fact that spinel oxides tend to form cation deficiencies can differentiate their electrocatalysis from other oxide materials, for example, the most studied oxygen‐deficient perovskites. Here, a systematic study of spinel ZnFexCo2?xO4 oxides (x = 0–2.0) toward the OER is presented and a highly active catalyst superior to benchmark IrO2 is developed. The distinctive OER activity is found to be dominated by the metal–oxygen covalency and an enlarged Co? O covalency by 10–30 at% Fe substitution is responsible for the activity enhancement. While the pH‐dependent OER activity of ZnFe0.4Co1.6O4 (the optimal one) indicates decoupled proton–electron transfers during the OER, the involvement of lattice oxygen is not considered as a favorable route because of the downshifted O p‐band center relative to Fermi level governed by the spinel's cation deficient nature.  相似文献   

11.
The improvement of activity of electrocatalysts lies in the increment of the density of active sites or the enhancement of intrinsic activity of each active site. A common strategy to realize dual active sites is the use of bimetal compound catalysts, where each metal atom contributes one active site. In this work, a new concept is presented to realize dual active sites with tunable electron densities in monometal compound catalysts. Dual Co2+ tetrahedral (Co2+(Td)) and Co3+ octahedral (Co3+(Oh)) coordination active sites are developed and adjustable electron densities on the Co2+(Td) and Co3+(Oh) are further achieved by phosphorus incorporation (P‐Co9S8). The experimental results and density functional theory calculations show that the nonmetal P doping can systematically modulate charge density of Co2+(Td) and Co3+(Oh) in P‐Co9S8 and simultaneously improve the electrical conductivity of Co9S8, which substantially enhances oxygen evolution reaction performance of P‐Co9S8.  相似文献   

12.
Abstract

We synthesize ScCoO3 perovskite and its solid solutions, ScCo1?xFexO3 and ScCo1?xCrxO3, under high pressure (6 GPa) and high temperature (1570 K) conditions. We find noticeable shifts from the stoichiometric compositions, expressed as (Sc1?xMx)MO3 with x = 0.05–0.11 and M = Co, (Co, Fe) and (Co, Cr). The crystal structure of (Sc0.95Co0.05)CoO3 is refined using synchrotron x-ray powder diffraction data: space group Pnma (No. 62), Z = 4 and lattice parameters a = 5.26766(1) Å, b = 7.14027(2) Å and c = 4.92231(1) Å. (Sc0.95Co0.05)CoO3 crystallizes in the GdFeO3-type structure similar to other members of the perovskite cobaltite family, ACoO3 (A3+ = Y and Pr-Lu). There is evidence that (Sc0.95Co0.05)CoO3 has non-magnetic low-spin Co3+ ions at the B site and paramagnetic high-spin Co3+ ions at the A site. In the iron-doped samples (Sc1?xMx)MO3 with M = (Co, Fe), Fe3+ ions have a strong preference to occupy the A site of such perovskites at small doping levels.  相似文献   

13.
Exquisite design of RuO2-based catalysts to simultaneously improve activity and stability under harsh conditions and reduce the Ru dosage is crucial for advancing energy conversion involving oxygen evolution reaction (OER). Herein, a distinctive cobalt-doped RuOx framework is constructed on Co3O4 nanocones (Co3O4@CoRuOx) as a promising strategy to realize above urgent desires. Extensive experimental characterization and theoretical analysis demonstrate that cobalt doped in RuOx lattice brings the oxygen vacancies and lattice contraction, which jointly redistribute the electron configuration of RuOx. The optimized d-band center balances the adsorption energies of oxygenated intermediates, lowing the thermodynamical barrier of the rate-determining step; and meanwhile, the over-oxidation and dissolution of Ru species are restrained because of the p-band down-shifting of the lattice oxygen. Co3O4@CoRuOx with 3.7 wt.% Ru delivers the extremely low OER overpotentials at 10 mA cm−2 in alkaline (167 mV), neutral (229 mV), and acidic electrolytes (161 mV), and super operating stability over dozens of hours. The unprecedented activity ranks first in all pH-universal OER catalysts reported so far. These findings provide a route to produce robust low-loading Ru catalysts and an engineering approach for regulating the central active metal through synergy of co-existing defects to improve the catalytic performance and stability.  相似文献   

14.
The widely used route of high‐temperature pyrolysis for transformation of Prussian blue analogs (PBAs) to functional nanomaterials leads to the fast removal of CN? ligands, and thus the formation of large metal aggregates and the loss of porous structures inside PBAs. Here, a controllable pyrolysis route at low temperature is reported for retaining the confined effect of CN? ligands to metal cations during the whole pyrolysis process, thereby preparing high‐surface‐area cubes comprising disordered bimetallic oxides (i.e., Co3O4 and Fe2O3) nanoparticles. The disordered structure of Co3O4 enables the exposure of abundant oxygen vacancies. Notably, for the first time, it is found that the in situ generated CoOOH during the oxygen evolution reaction (OER) can inherit the oxygen vacancies of pristine Co3O4 (i.e., before OER), and such CoOOH with abundant oxygen vacancies adsorbs two ?OH in the following Co3+ to Co4+ for markedly promoting OER. However, during the similar step, the ordered Co3O4 with less oxygen vacancies only involves one ?OH, resulting in the additional overpotentials for adsorbing ?OH. Consequently, with high surface area and disordered Co3O4, the as‐synthesized electrocatalysts have a low potential of 237 mV at 10 mA cm?2, surpassing most of reported electrocatalysts.  相似文献   

15.
Polycrystalline samples of Gd2?xCo x Ru2O7 with x = 0.0, 0.1 and 0.4 were synthesized by the molten salt method. The samples were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrical resistivity measurements. Rietveld refinements of the XRD patterns and XPS measurements showed that the Co2+ ion replaces Gd3+ sites. As a result, the lattice parameter a and the Ru–O bond length decrease; then, the Ru–O–Ru bond angle increases. Those changes induce a charge compensation which was detected by XPS measurements. The analysis of these results shows that the Ru 3d5/2 core level could be fitted assuming the contribution of two different chemical states of the Ru. The Ru 3d5/2 core level is localized at 280.7 and 281.6 eV, which corresponds to Ru4+ and Ru5+. The valence band XPS spectra show an increase in Co 3d states at the Fermi level as the Co content increases, which contribute to the decrease in the electrical resistivity.  相似文献   

16.
Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal–air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalytic activities and practical applications. In this study, transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn–air batteries. By simply immersing Co‐based hydroxide precursor into solution with high‐concentration S2?, transition metal hydroxides convert to hydroxysulfides with excellent morphology preservation at room temperature. The as‐obtained Co‐based metal hydroxysulfides are with high intrinsic reactivity and electrical conductivity. The electron structure of the active sites is adjusted by anion modulation. The potential for 10 mA cm?2 OER current density is 1.588 V versus reversible hydrogen electrode (RHE), and the ORR half‐wave potential is 0.721 V versus RHE, with a potential gap of 0.867 V for bifunctional oxygen electrocatalysis. The Co3FeS1.5(OH)6 hydroxysulfides are employed in the air electrode for a rechargeable Zn–air battery with a small overpotential of 0.86 V at 20.0 mA cm?2, a high specific capacity of 898 mAh g?1, and a long cycling life, which is much better than Pt and Ir‐based electrocatalyst in Zn–air batteries.  相似文献   

17.
Here, ferrocene(Fc)‐incorporated cobalt sulfide (CoxSy) nanostructures directly grown on carbon nanotube (CNT) or carbon fiber (CF) networks for electrochemical oxygen evolution reaction (OER) using a facile one‐step solvothermal method are reported. The strong synergistic interaction between Fc‐CoxSy nanostructures and electrically conductive CNTs results in the superior electrocatalytic activity with a very small overpotential of ≈304 mV at 10 mA cm?2 and a low Tafel slope of 54.2 mV dec?1 in 1 m KOH electrolyte. Furthermore, the Fc‐incorporated CoxSy (FCoS) nanostructures are directly grown on the acid pretreated carbon fiber (ACF), and the resulting fabricated electrode delivers excellent OER performance with a low overpotential of ≈315 mV at 10 mA cm?2. Such superior OER catalytic activity can be attributed to 3D Fc‐CoxSy nanoarchitectures that consist of a high concentration of vertical nanosheets with uniform distribution of nanoparticles that afford a large number of active surface areas and edge sites. Besides, the tight contact interface between ACF substrate and Fc‐CoxSy nanostructures could effectively facilitate the electron transfer rate in the OER. This study provides valuable insights for the rational design of energy storage and conversion materials by the incorporation of other transition metal into metal sulfide/oxide nanostructures utilizing metallocene.  相似文献   

18.
19.
The incorporation of Ti, Cr, Mn, Fe, Cu, Zn and Rh in the cubic spinel phase Co2+xRu1?xO4 has been studied for the systems Co2?xRu1?xRh2xO4, Co2Ru1?xTixO4, Co1, 5M1?yRhyRu0, 5O4 (M = Cr, Mn, Fe), Co1, 5?zCuzRhRu0, 5O4, Co2?zZnzRuO4 and Co2, 3?zCrzRu0, 7O4. All compounds are semi-conductors. The concentration of free electrons is decreased by incorporation of Rh and Ti respectively. On the contrary a strong increase is observed for all Cu containing spinels, whereas the Mn and Fe compounds show a corresponding but minor effect. In comparision to the pure Ru phases the solubility in concentrated mineral acids is completely suppressed in all Rh containing spinels.  相似文献   

20.
Highly active and durable air cathodes to catalyze both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for rechargeable metal–air batteries. In this work, an efficient bifunctional oxygen catalyst comprising hollow Co3O4 nanospheres embedded in nitrogen‐doped carbon nanowall arrays on flexible carbon cloth (NC‐Co3O4/CC) is reported. The hierarchical structure is facilely derived from a metal–organic framework precursor. A carbon onion coating constrains the Kirkendall effect to promote the conversion of the Co nanoparticles into irregular hollow oxide nanospheres with a fine scale nanograin structure, which enables promising catalytic properties toward both OER and ORR. The integrated NC‐Co3O4/CC can be used as an additive‐free air cathode for flexible all‐solid‐state zinc–air batteries, which present high open circuit potential (1.44 V), high capacity (387.2 mAh g?1, based on the total mass of Zn and catalysts), excellent cycling stability and mechanical flexibility, significantly outperforming Pt‐ and Ir‐based zinc–air batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号