首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the structural performance of vertically distributed multiple tuned mass dampers (MTMDs), which can save valuable occupiable space near the top of tall buildings, control the first as well as higher mode responses and be installed more easily because of smaller tuned mass damper (TMD) masses. Vertically distributed MTMD theory is presented. With this theory, the effectiveness of vertically distributed MTMDs along the building height is predicted using simplified models, compared with the conventional TMDs installed near the top of tall buildings. Vertically distributed MTMDs are designed for a typical 60‐storey tall building subjected to representative dynamic wind loads, and their performance is measured. The results of these studies show that TMDs can be distributed vertically along the building height without substantial loss of their effectiveness. Considering their advantages over the conventional system, vertically distributed MTMDs possess a high potential of practical applications for tall‐building motion control. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The aim of the present study is to investigate the efficiency of the torsional tuned mass dampers (T‐TMDs) in response control of asymmetric buildings under bidirectional earthquake ground excitations. The efficiency of the T‐TMDs is compared with bidirectional tuned mass dampers (BTMDs). The T‐TMDs are oriented to the rotation of the structures about vertical axis with a single torsional mass attached to spring–dashpot elements, whereas the BTMD connects a single mass to two orthogonal sets of spring–dashpot elements oriented to principal axes of the building. The buildings are idealized three‐dimensional models with two translational and one torsional degrees of freedom for each floor. Three different configurations (cruciform‐shaped, L‐shaped, and T‐shaped) of multistory buildings are considered. The 5‐, 15‐, and 20‐story buildings with and without the tuned mass damper schemes are subjected to bidirectional earthquake ground excitation. In order to evaluate the effectiveness of the T‐TMDs and BTMD, the rotation, displacement, acceleration, and base shear force responses are computed. Parametric studies are conducted for all the configurations installed with the T‐TMDs and BTMD by varying their mass ratio, damping ratio, and ground motions. It is concluded that the T‐TMDs are more effective in mitigating the torsional response of asymmetric buildings as compared with the BTMD.  相似文献   

3.
The tuned mass damper inerter (TMDI) is an enhanced variant of the tuned mass damper (TMD) that benefits from the mass‐amplification effect of the inerter. Here, a multi‐TMDI (MTMDI) system (comprising more than one TMDI) linking two adjacent high‐rise buildings is presented as an unconventional seismic protection strategy. The relative acceleration response of the adjacent structures triggers large reaction forces of the inerter devices in the MTMDI, which in turn efficiently improve the seismic performance of the two buildings. By addressing a real project of two adjacent high‐rise buildings connected by two corridors equipped with the proposed MTMDI system, the displacement‐, interstory drift‐, and acceleration‐based parametric optimizations are separately performed by employing Nondominated Sorting Genetic Algorithm II (NSGA‐II) under 44 ground motions from the FEMA P695 far‐field record set. It is found that the frequency content of the seismic input has strong impact on the MTMDI mitigation performance. Adopting realistic mass ratio constraints, the optimally designed MTMDI outperforms both conventional MTMD and single TMDI in acceleration control, while it is not much effective in mitigating the displacement response due to the highly flexible nature of the high‐rise buildings, in contrast to other literature studies generally focused on low‐to‐medium rise buildings.  相似文献   

4.
Abstract:   This study proposed a new semiactive control device for building control. Semiactive tuned mass damper (STMD) combine a tradition tuned mass damper (TMD) and a semiactive damper. The property of semiactive damper can be adjusted online to produce the desired control force. In the present year, many types of semiactive dampers are proposed. In this study, the variable damping device and MR damper are used to illustrate the control effect of STMD. In addition, the control effect of the TMD and active tuned mass damper are also compared. The numerical simulation results show that the STMD can greatly improve the control efficiency of TMD.  相似文献   

5.
鲁正  廖元  吕西林 《建筑结构学报》2019,40(12):163-168
基于5层钢框架模型,通过试验对比了在地震激励下调谐质量阻尼器和调谐型颗粒阻尼器的减震性能,并探究了频率失调等因素的影响。通过数值模拟实现了两种阻尼器的优化设计,以考察充分发挥其性能的工况下,两种阻尼器的减震效果以及阻尼器相对位移行程的对比。研究表明:在频率调谐时,调谐质量阻尼器和调谐型颗粒阻尼器均能显著降低主体结构位移和加速度响应,调谐型颗粒阻尼器的减震效果更好,具有一定的减震优势,并且调谐型颗粒阻尼器的相对位移行程更小、减震频带更宽;当两者均为最优设计时,减震效果相当,但是最优化调谐型颗粒阻尼器系统的阻尼器与主体结构之间的相对位移更小,可降低相对位移幅值24.5%,并且具有更好的鲁棒性。  相似文献   

6.
The 20-storey steel building has been declared as seismically excited benchmark building by structural control community to compare various control strategy, such as active, passive, semi-active and combination thereof. In this study, dynamic behaviour of the benchmark building installed with friction damper is investigated. For evaluation of structural responses, the seismic excitations considered are El Cento, Hachinohe, Northridge and Kobe. The friction damper with numerical rectangular ideal elasto-plastic hysteretic model is proposed to be used for the analysis. The effectiveness of friction dampers for reduction of responses namely, displacement, acceleration, base shear and performance criteria stipulated in the benchmark problem is investigated. Since, the activation of friction damper depends on slip force, a parametric study is also conducted to investigate the optimum slip force of the dampers, which yield the minimum responses. Further, optimal placement of dampers, rather than providing the dampers at all the floor levels is also studied, to minimise the cost of the dampers. Numerical study is also carried out by varying the slip force of dampers along the height of the benchmark building. Results show that for appropriate slip force and optimum location number, friction dampers installed in benchmark building can effectively reduce earthquake-induced responses.  相似文献   

7.
研究平动PTMD(translation passive tuned mass dampers)和转动PTMD(rotational passive tunedmass dampers)的参数变化对剪切型结构地震反应的影响.并采用MATLAB中的SIMULINK工具箱进行动态仿真,得出受控结构的动态反应,将两种控制方法应用到某十层建筑上,计算分析的数值结果表明两者用于控制顶层相对位移和绝对加速度都是比较有效的.  相似文献   

8.
The present study investigates the performance of fixed parameter control algorithms on wind‐excited high‐rise structures equipped with semi‐active tuned mass dampers of variable damping. It has been demonstrated that the algorithms that increase significantly the performance of the controlled structure do so at the expense of damper strokes. When the maximum damper strokes are capped to progressively lower limits, the efficacy of different algorithms, measured through a number of performance objectives, drastically alters totally changing the performance ranking of them and pointing out the need for an extensive study of the interplay between loading, control algorithm and allowable stroke within the design of semi‐active tuned mass dampers devices. 2015 The Authors. The Structural Design of Tall and Special Buildings published by John Wiley & Sons Ltd.  相似文献   

9.
The wind‐induced vibrations of super tall buildings become excessive due to strong wind loads, super building height and high flexibility. Tuned mass dampers (TMDs) and tuned liquid column dampers (TLCDs) have been widely used to control vibrations for actual super tall buildings for decades. To fully use both the economic advantage of the TLCD system and the high efficiency of the TMD system, an innovative supplemental damping system including both TLCD and TMD and called combined tuned damper (CTD), which can substantially decrease the cost of the damper, was proposed to control the wind‐induced vibrations of tall buildings. The governing equations are generated for the motion of both the primary structure and the CTD and solved to anticipate the dynamic response of the CTD‐structure system. Moreover, an optimal design method of human comfort performance is proposed, in which the life cycle cost of the damper‐structure system is considered as the quantitative index of the performance. The life cycle cost includes the initial cost, the maintenance cost and the failure cost. The failure cost can be calculated using the vibration‐sensation rate model, which is based on the Japanese code AIJES‐V001‐2004. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
宿迁市府苑小区综合楼隔震分析   总被引:2,自引:0,他引:2  
宿迁市府苑小区综合楼位于 8度区 ,设计基本地震加速度值为 0 3 0 g ,为 6层底部框架砌体结构 ,平面呈三折线形。工程采用基础隔震技术进行结构设计 ,隔震层由橡胶隔震支座、滑移支座、粘滞消能器组成。对隔震体系空间模型的时程分析表明 :采用基础隔震措施可显著降低上部结构的地震作用 ;设置粘滞消能器能较好地解决降低上部结构的地震作用和限制隔震层位移之间的矛盾 ,有效地消除结构的扭转效应  相似文献   

11.
以某钢筋混凝土框架结构工程实例为研究对象,选取与场地条件相匹配的地震动作为激励,在SAP2000程序中计算了该结构在多遇和罕遇地震作用下的非线性动力反应,并在框架结构模型中分别设置屈曲约束支撑和黏滞阻尼器。通过试算确定消能减震装置的参数,使得两种消能减震结构在多遇地震作用下的位移减震率均为40%。在此条件下,对比分析了结构的层间位移角、楼层加速度、基底剪力、柱轴力、塑性铰分布和各层阻尼器的工作状态。分析表明:在多遇地震作用下,屈曲约束支撑增大了结构的加速度响应,而黏滞阻尼器能够减小结构的加速度响应;在罕遇地震作用下,二者均能有效控制楼层的加速度响应,而屈曲约束支撑的位移减震效果更好,但黏滞阻尼器对框架柱内力的减少效果更为显著。  相似文献   

12.
粘滞阻尼器连接的相邻隔震与非隔震建筑地震反应分析   总被引:1,自引:0,他引:1  
针对隔震结构在地震作用下隔震层位移较大,可能会与相邻非隔震结构之间产生碰撞问题进行了分析,采用简化模型对隔震与相邻非隔震结构之间布置粘滞阻尼器的减震控制的工作机理进行了研究。建立了隔震与相邻非隔震结构之间布置粘滞阻尼器减震控制的数值仿真分析模型,研究了粘滞阻尼器的阻尼系数、布置位置以及隔震结构隔震层刚度对结构顶点位移的影响。结果表明:随着阻尼器阻尼系数和隔震结构隔震层刚度的增加,隔震结构顶层位移也随之增大,阻尼器布置位置越靠近隔震层,相邻非隔震结构顶层位移控制效果越明显。  相似文献   

13.
随着高层以及超高层建筑结构不断向更高和更柔的方向发展,强风作用下这类建筑的传统设计方法有时已经无法完全满足结构的抗风设计要求。因此,提出了采用振动控制来抑制结构风致振动控制的新方法。论文首先概述了高层建筑中风振控制的方法及其国内外的研究现状,然后对其中的调谐质量阻尼器(TMD)、主动调谐质量阻尼器(ATMD),以及摩擦阻尼器这3种控制方法详加评述,最后进一步指出我国风振控制研究的发展方向。  相似文献   

14.
15.
This paper investigates a hybrid structural control system using tuned liquid dampers (TLDs) and lead-rubber bearing (LRB) systems for mitigating earthquake-induced vibrations. Furthermore, a new approach for taking into account the uncertainties associated with the steel shear buildings is proposed. In the proposed approach, the probabilistic distributions of the stiffness and yield properties of stories of a set of reference steel moment frame structures are derived through Monte-Carlo sampling. The approach is applied to steel shear buildings isolated with LRB systems. The base isolation systems are designed for different target base displacements by minimizing a relative performance index using Genetic Algorithm. Thereafter, the base-isolated structures are equipped with TLDs and a combination of the base and TLD properties is sought by which the maximum reduction occurs in the base displacement without compromising the performance of the system. In addition, the effects of TLD properties on the performance of the system are studied through a parametric study. Based on the analyses results, the base displacement can be reduced 23% by average, however, the maximum reduction can go beyond 30%.  相似文献   

16.
为了进一步改善SMA复合支座在强震下的隔震效果,特别是当复合支座的水平剪切变形较大时,将SMA复合支座与磁流变阻尼器相结合,建立一种基于SMA复合支座与磁流变阻尼器的双重隔震体系及其力学模型,并与单纯的SMA复合支座隔震进行对比。仿真分析表明,该体系不仅能够大幅度地减小隔震层的水平侧移,有效地保护隔震装置,而且能使上部结构的层间位移与加速度反应得到有效的控制,从而提高隔震建筑的减震效果和可靠性。  相似文献   

17.
Abstract: For a secondary mass damper such as tuned liquid damper (TLD) or tuned liquid column damper (TLCD), whose moving mass is liquid, it is impossible to prefabricate the damper in a factory for the identification of dynamic properties. Also, it is not easy to prefabricate a concrete tuned mass damper (TMD), whose moving mass is made of concrete, in a factory. In this article, an identification method for finding dynamic properties of secondary mass dampers based on the full‐scale field test is presented. Decoupled equations of motion are derived from a coupled equation of motion of building and damper. The decoupled equations of motion are then used for system identification using the response of the damper as an input and the response of the building as an output. The proposed method is applied to numerical examples and an actual TMD and TLCD installed in buildings.  相似文献   

18.
This paper proposes a base isolating system to reduce the seismic demands of low- or medium-rise structures and experimentally investigates its seismic response using shake-table tests. The base isolating system considered in this study consists of laminated-rubber bearings and U-shaped hysteretic (UH) dampers which are made of high toughness steel (HTS) and are machined with slotted holes to increase their deformation capacities. A base isolated 2-story specimen for shake-table tests was first designed and cyclic tests of laminated-rubber bearings and UH dampers implemented in the base isolating systems were then carried out. The component test for the laminated-rubber bearings shows typically low lateral stiffness with enough vertical stiffness to carry gravity loads. The test results for the UH dampers demonstrate that the use of HTS material and the introduction of the slotted holes details increase deformation capacities by inducing uniform stress distribution along a UH damper. Finally, shake-table tests were performed using specimens shaken with increasing ground acceleration records. The shake-table tests show that the proposed base isolating system with UH dampers limits the seismic demands of a base isolated structure by lengthening its structural period, concentrating displacement demands on the base isolating floor and adding seismic energy dissipation from the UH dampers.  相似文献   

19.
The performances of variable curvature sliding isolators like variable frequency pendulum isolator (VFPI) and variable curvature friction pendulum system (VCFPS) installed in the base‐isolated benchmark building subjected to bi‐directionally acting seven strong earthquakes have been studied. The shear type base‐isolated benchmark building is modelled as three‐dimensional linear elastic structure having three degrees‐of‐freedom at each floor level. Time domain dynamic analysis of the building has been carried out with the help of constant average acceleration Newmark‐Beta method and non‐linear isolation forces has been taken care by fourth‐order Runge‐Kutta method. The force‐displacement responses of the VFPI and VCFPS are studied under parametric variations of their key characteristics for the comparative performance evaluation. The time history variations of response characteristics and peak response evaluation criteria are also investigated for overall comparison of their performances. The performance of VFPI and VCFPS are observed both in uniform and hybrid isolation systems. The force‐displacement responses of both VFPI and VCFPS subjected to strong near‐field earthquakes show excessively large isolator displacements at higher initial radii of curvature of sliding surface. The large isolator displacements of VFPI and VCFPS can be restrained efficiently by addition of viscous fluid dampers in comparison to the increase in coefficient of friction of isolators. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Tuned mass dampers are frequently used for passive control of vibrations in civil structures subject to seismic and wind actions. Their efficiency depends on selection of their mechanical properties in relation to main system and excitation characteristics. This paper proposes an optimum design strategy of single tuned mass dampers to control vibrations of principal mode of structures excited by earthquake ground motion. The main purpose of the paper is to investigate the influence of the time modulation of earthquake excitation upon the optimal tuned mass dampers design parameters: frequency and damping ratio. The study is based on numerical analyses carried out with different stochastic models for earthquakes: a simple filtered white noise model and two time modulated filtered white noise models. The numerical analyses are carried out to solve an optimization problem with a performance index defined by the reduction of the standard deviation of either the structure displacement or its inertial acceleration as objective function. To complete the work, the influence of the bandwidth excitation over the values of the optimal tuned mass damper parameters is investigated, as well the optimum mass ratio and the structure frequency. The results of the numeral analyses carried out infer that the earthquake excitation characteristics, including its modulation in time domain, highly affect the optimum tuned mass damper design parameters values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号