首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The lithium metal anode has attracted soaring attention as an ideal battery anode. Unfortunately, nonuniform Li nucleation results in uncontrollable growth of dendritic Li, which incurs serious safety issues and poor electrochemical performance, hindering its practical applications. Herein, this study shows that uniform Li nucleation/growth can be induced by an ultralight 3D current collector consisting of in situ nitrogen‐doped graphitic carbon foams (NGCFs) to realize suppressing dendritic Li growth at the nucleating stage. The N‐containing functional groups guide homogenous growth of Li nucleus nanoparticles and the initial Li nucleus seed layer regulates the following well‐distributed Li growth. Benefiting from such favorable Li growth behavior, superior electrochemical performance can be achieved as evidenced by the high Coulombic efficiency (≈99.6% for 300 cycles), large capacity (10 mA h cm?2, 3140 mA h g?1NGCF‐Li), and ultralong lifespan (>1200 h) together with low overpotential (<25 mV at 3 mA cm?2); even under a high current density up to 10 mA cm?2, it still displays low overpotential of 62 mV.  相似文献   

2.
Structure engineering of ultrathin metal–organic framework (MOF) nanosheets to self‐supporting and well‐aligned MOF superstructures is highly desired for diverse applications, especially important for electrocatalysis. In this work, a facile layered double hydroxides in situ transformation strategy is developed to synthesize ultrathin bimetal‐MOF nanosheets (BMNSs) arrays on conductive substrates. This approach is versatile, and applicable to obtain various BMNSs or even trimetal‐MOF nanosheets arrays on different substrates. As a proof of concept application, the obtained ultrathin NiCo‐BDC BMNSs array exhibits an excellent catalytic activity toward the oxygen evolution reaction with an overpotential of only 230 mV to reach a current density of 10 mA cm?2 in 1 m KOH. The present work demonstrates a strategy to prepare ultrathin bimetal‐MOF nanosheets arrays, which might open an avenue for various promising applications of MOF materials.  相似文献   

3.
Controllable synthesis of ultrathin metal–organic framework (MOF) nanosheets and rational design of their nano/microstructures in favor of electrochemical catalysis is critical for their renewable energy applications. Herein, an in situ growth method is proposed to prepare the ultrathin NiFe MOF nanosheets with a thickness of 1.5 nm, which are vertically inlaid into a 3D ordered macroporous structure of NiFe hydroxide. The well‐designed composite delivers an efficient electrocatalytic performance with a low overpotential of 270 mV at a current density of 10 mA cm?2 and stable electrolysis as long as 10 h toward the electrochemical oxygen evolution reaction, much superior to the state‐of‐the‐art RuO2 electrocatalyst. A comprehensive analysis demonstrates that the excellent performance originates from the desirable combination of the highly exposed active centers in the ultrathin bimetallic MOF nanosheets, effective electron conduction between MOF nanosheets and ordered macroporous hydroxide, and efficient mass transfer across the hierarchically porous hybridization. This study sheds light on the exploration of powerful protocols to gain diverse high‐performance MOF nanosheets and may open a perspective to achieve their efficient electrocatalytic performance.  相似文献   

4.
Direct use of metal–organic frameworks (MOFs) with robust pore structures, large surface areas, and high density of coordinatively unsaturated metal sites as electrochemical active materials is highly desirable (rather than using as templates and/or precursors for high‐temperature calcination), but this is practically hindered by the poor conductivity and low accessibility of active sites in the bulk form. Herein, a universal vapor‐phase method is reported to grow well‐aligned MOFs on conductive carbon cloth (CC) by using metal hydroxyl fluorides with diverse morphologies as self‐sacrificial templates. Specifically, by further partially on‐site generating active Co3S4 species from Co ions in the echinops‐like Co‐based MOF (EC‐MOF) through a controlled vulcanization approach, the resulting Co3S4/EC‐MOF hybrid exhibits much enhanced electrocatalytic performance toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with overpotentials of 84 and 226 mV required to reach a current density of 10 mA cm?2, respectively. Density functional theory (DFT) calculations and experimental results reveal that the electron transfer between Co3S4 species and EC‐MOF can decrease the electron density of the Co d‐orbital, resulting in more electrocatalytically optimized adsorption properties for Co. This study will open up a new avenue for designing highly ordered MOF‐based surface active materials for various electrochemical energy applications.  相似文献   

5.
Herein, an approach is reported for fabrication of Co‐Nx‐embedded 1D porous carbon nanofibers (CNFs) with graphitic carbon‐encased Co nanoparticles originated from metal–organic frameworks (MOFs), which is further explored as a bifunctional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Electrochemical results reveal that the electrocatalyst prepared by pyrolysis at 1000 °C (CoNC‐CNF‐1000) exhibits excellent catalytic activity toward ORR that favors the four‐electron ORR process and outstanding long‐term stability with 86% current retention after 40 000 s. Meanwhile, it also shows superior electrocatalytic activity toward OER, reaching a lower potential of 1.68 V at 10 mA cm?2 and a potential gap of 0.88 V between the OER potential (at 10 mA cm?2) and the ORR half‐wave potential. The ORR and OER performance of CoNC‐CNF‐1000 have outperformed commercial Pt/C and most nonprecious‐metal catalysts reported to date. The remarkable ORR and OER catalytic performance can be mainly attributable to the unique 1D structure, such as higher graphitization degree beneficial for electronic mobility, hierarchical porosity facilitating the mass transport, and highly dispersed CoNxC active sites functionalized carbon framework. This strategy will shed light on the development of other MOF‐based carbon nanofibers for energy storage and electrochemical devices.  相似文献   

6.
2D metal–organic frameworks (2D MOFs) are promising templates for the fabrication of carbon supported 2D metal/metal sulfide nanocomposites. Herein, controllable synthesis of a newly developed 2D Ni‐based MOF nanoplates in well‐defined rectangle morphology is first realized via a pyridine‐assisted bottom‐up solvothermal treatment of NiSO4 and 4,4′‐bipyridine. The thickness of the MOF nanoplates can be controlled to below 20 nm, while the lateral size can be tuned in a wide range with different amounts of pyridine. Subsequent pyrolysis treatment converts the MOF nanoplates into 2D free‐standing nitrogen‐doped Ni‐Ni3S2@carbon nanoplates. The obtained Ni‐Ni3S2 nanoparticles encapsulated in the N‐doped carbon matrix exhibits high electrocatalytic activity in oxygen evolution reaction. A low overpotential of 284.7 mV at a current density of 10 mA cm?2 is achieved in alkaline solution, which is among the best reported performance of substrate‐free nickel sulfides based nanomaterials.  相似文献   

7.
An efficient and low‐cost electrocatalyst for reversible oxygen electrocatalysis is crucial for improving the performance of rechargeable metal?air batteries. Herein, a novel oxygen vacancy–rich 2D porous In‐doped CoO/CoP heterostructure (In‐CoO/CoP FNS) is designed and developed by a facile free radicals–induced strategy as an effective bifunctional electrocatalyst for rechargeable Zn–air batteries. The electron spin resonance and X‐ray absorption near edge spectroscopy provide clear evidence that abundant oxygen vacancies are formed in the interface of In‐CoO/CoP FNS. Owing to abundant oxygen vacancies, porous heterostructure, and multiple components, In‐CoO/CoP FNS exhibits excellent oxygen reduction reaction activity with a positive half‐wave potential of 0.81 V and superior oxygen evolution reaction activity with a low overpotential of 365 mV at 10 mA cm?2. Moreover, a home‐made Zn–air battery with In‐CoO/CoP FNS as an air cathode delivers a large power density of 139.4 mW cm?2, a high energy density of 938 Wh kgZn?1, and can be steadily cycled over 130 h at 10 mA cm?2, demonstrating great application potential in rechargeable metal–air batteries.  相似文献   

8.
Carbides are commonly regarded as efficient hydrogen evolution reaction (HER) catalysts, but their poor oxygen evolution reaction (OER) catalytic activities seriously limit their practical application in overall water splitting. Here, vertically aligned porous cobalt tungsten carbide nanosheet embedded in N‐doped carbon matrix (Co6W6C@NC) is successfully constructed on flexible carbon cloth (CC) as an efficient bifunctional electrocatalyst for overall water splitting via a facile metal–organic framework (MOF) derived method. The synergistic effect of Co and W atoms effectively tailors the electron state of carbide, optimizing the hydrogen‐binding energy. Thus Co6W6C@NC shows an enhanced HER performance with an overpotential of 59 mV at a current density of ?10 mA cm?2. Besides, Co6W6C@NC easily in situ transforms into tungsten actived cobalt oxide/hydroxide during the OER process, serving as OER active species, which provides an excellent OER activity with an overpotential of 286 mV at a current density of ?10 mA cm?2. The water splitting device, by applying Co6W6C@NC as both the cathode and anode, requires a low cell voltage of 1.585 V at 10 mA cm?2 with the great stability in alkaline solution. This work provides a feasible strategy to fabricate bimetallic carbides and explores their possibility as bifunctional catalysts toward overall water splitting.  相似文献   

9.
High‐capacity anodes of lithium‐ion batteries generally suffer from poor electrical conductivity, large volume variation, and low tap density caused by prepared nanostructures, which make it an obstacle to achieve both high‐areal capacity and stable cycling performance for practical applications. Herein, micrometer‐sized porous Fe2N/C bulk is prepared to tackle the aforementioned issues, and thus realize both high‐areal capacity and stable cycling performance at high mass loading. The porous structure in Fe2N/C bulk is beneficial to alleviate the volumetric change. In addition, the N‐doped carbon conducting networks with high electrical conductivity provide a fast charge transfer pathway. Meanwhile, the micrometer‐sized Fe2N/C bulk exhibits a higher tap density than that of commercial graphite powder (1.03 g cm?3), which facilitates the preparation of thinner electrode at high mass loadings. As a result, a high‐areal capacity of above 4.2 mA h cm?2 at 0.45 mA cm?2 is obtained at a high mass loading of 7.0 mg cm?2 for LIBs, which still maintains at 2.59 mA h cm?2 after 200 cycles with a capacity retention of 98.8% at 0.89 mA cm?2.  相似文献   

10.
Development of high‐performance and low‐cost nonprecious metal electrocatalysts is critical for eco‐friendly hydrogen production through electrolysis. Herein, a novel nanoflower‐like electrocatalyst comprising few‐layer nitrogen‐doped graphene‐encapsulated nickel–copper alloy directly on a porous nitrogen‐doped graphic carbon framework (denoted as Nix Cuy @ NG‐NC) is successfully synthesized using a facile and scalable method through calcinating the carbon, copper, and nickel hydroxy carbonate composite under inert atmosphere. The introduction of Cu can effectively modulate the morphologies and hydrogen evolution reaction (HER) performance. Moreover, the calcination temperature is an important factor to tune the thickness of graphene layers of the Nix Cuy @ NG‐NC composites and the associated electrocatalytic performance. Due to the collective effects including unique porous flowered architecture and the synergetic effect between the bimetallic alloy core and graphene shell, the Ni3Cu1@ NG‐NC electrocatalyst obtained under optimized conditions exhibits highly efficient and ultrastable activity toward HER in harsh environments, i.e., a low overpotential of 122 mV to achieve a current density of 10 mA cm?2 with a low Tafel slope of 84.2 mV dec?1 in alkaline media, and a low overpotential of 95 mV to achieve a current density of 10 mA cm?2 with a low Tafel slope of 77.1 mV dec?1 in acidic electrolyte.  相似文献   

11.
Exploring highly efficient and low‐cost electrocatalysts for electrochemical water splitting is of importance for the conversion of intermediate energy. Herein, the synthesis of dual‐cation (Fe, Co)‐incorporated NiSe2 nanosheets (Fe, Co‐NiSe2) and systematical investigation of their electrocatalytic performance for water splitting as a function of the composition are reported. The dual‐cation incorporation can distort the lattice and induce stronger electronic interaction, leading to increased active site exposure and optimized adsorption energy of reaction intermediates compared to single‐cation‐doped or pure NiSe2. As a result, the obtained Fe0.09Co0.13‐NiSe2 porous nanosheet electrode shows an optimized catalytic activity with a low overpotential of 251 mV for oxygen evolution reaction and 92 mV for hydrogen evolution reaction (both at 10 mA cm?2 in 1 m KOH). When used as bifunctional electrodes for overall water splitting, the current density of 10 mA cm?2 is achieved at a low cell voltage of 1.52 V. This work highlights the importance of dual‐cation doping in enhancing the electrocatalyst performance of transition metal dichalcogenides.  相似文献   

12.
Oxygen evolution reaction (OER) is of great significance for hydrogen production via water electrolysis, which, however, demands development of highly active, durable, and cost‐effective electrocatalysts in order to stride into a renewable energy era. Herein, highly efficient and long‐term durable OER by coupling B and P into an amorphous porous NiFe‐based electrocatalyst is reported, which possesses an amorphous porous metallic bulk structure and high corrosion resistance, and overcomes the issues associated with currently used catalyst nanomaterials. The PB codoping in the activated NiFePB (a‐NiFePB) delocalizes both Fe and Ni at Fermi energy level and enhances p–d hybridization as simulated by density functional theory calculations. The harmonized electronic structure and unique porous framework of the a‐NiFePB consequently improve the OER activity. The activated NiFePB thus exhibits an extraordinarily low overpotential of 197 mV for harvesting 10 mA cm?2 OER current density and 233 mV for reaching 100 mA cm?2 under chronopotentiometry condition, with the Tafel slope harmoniously conforming to 34 mV dec?1. Impressive long‐term stability of this new catalyst is evidenced by only limited activity decay after 1400 h operation at 100 mA cm?2. This work strategically directs a way for heading up a promising energy conversion alternative.  相似文献   

13.
Cobalt sulfide (CoS2) is considered one of the most promising alternative anode materials for high‐performance lithium‐ion batteries (LIBs) by virtue of its remarkable electrical conductivity, high theoretical capacity, and low cost. However, it suffers from a poor cycling stability and low rate capability because of its volume expansion and dissolution of the polysulfide intermediates in the organic electrolytes during the battery charge/discharge process. In this study, a novel porous carbon/CoS2 composite is prepared by using nano metal–organic framework (MOF) templates for high‐preformance LIBs. The as‐made ultrasmall CoS2 (15 nm) nanoparticles in N‐rich carbon exhibit promising lithium storage properties with negligible loss of capacity at high charge/discharge rate. At a current density of 100 mA g?1, a capacity of 560 mA h g?1 is maintained after 50 cycles. Even at a current density as high as 2500 mA g?1, a reversible capacity of 410 mA h g?1 is obtained. The excellent and highly stable battery performance should be attributed to the synergism of the ultrasmall CoS2 particles and the thin N‐rich porous carbon shells derieved from nanosized MOF precusors.  相似文献   

14.
The oxygen evolution reaction (OER) catalytic activity of a transition metal oxides/hydroxides based electrocatalyst is related to its pseudocapacitance at potentials lower than the OER standard potential. Thus, a well‐defined pseudocapacitance could be a great supplement to boost OER. Herein, a highly pseudocapacitive Ni‐Fe‐Co hydroxides/N‐doped carbon nanoplates (NiCoFe‐NC)‐based electrocatalyst is synthesized using a facile one‐pot solvothermal approach. The NiCoFe‐NC has a great pseudocapacitive performance with 1849 F g?1 specific capacitance and 31.5 Wh kg?1 energy density. This material also exhibits an excellent OER catalytic activity comparable to the benchmark RuO2 catalysts (an initiating overpotential of 160 mV and delivering 10 mA cm?2 current density at 250 mV, with a Tafel slope of 31 mV dec?1). The catalytic performance of the optimized NiCoFe‐NC catalyst could keep 24 h. X‐ray photoelectron spectroscopy, electrochemically active surface area, and other physicochemical and electrochemical analyses reveal that its great OER catalytic activity is ascribed to the Ni‐Co hydroxides with modular 2‐Dimensional layered structure, the synergistic interactions among the Fe(III) species and Ni, Co metal centers, and the improved hydrophily endowed by the incorporation of N‐doped carbon hydrogel. This work might provide a useful and general strategy to design and synthesize high‐performance metal (hydr)oxides OER electrocatalysts.  相似文献   

15.
Metal–organic frameworks (MOFs) with tunable compositions and morphologies are recognized as efficient self‐sacrificial templates to achieve function‐oriented nanostructured materials. Moreover, it is urgently needed to develop highly efficient noble metal‐free oxygen evolution reaction (OER) electrocatalysts to accelerate the development of overall water splitting green energy conversion systems. Herein, a facile and cost‐efficient strategy to synthesize Co9S8 nanoparticles‐embedded N/S‐codoped carbon nanofibers (Co9S8/NSCNFs) as highly active OER catalyst is developed. The hybrid precursor of core–shell ZIF‐wrapped CdS nanowires is first prepared and then leads to the formation of uniformly dispersed Co9S8/N, S‐codoped carbon nanocomposites through a one‐step calcination reaction. The optimal Co9S8/NSCNFs‐850 is demonstrated to possess excellent electrocatalytic performance for OER in 1.0 m KOH solution, affording a low overpotential of 302 mV to reach the current density of 10 mA cm?2, a small Tafel slope of 54 mV dec?1, and superior long‐term stability for 1000 cyclic voltammetry cycles. The favorable results raise a concept of exploring more MOF‐based nanohybrids as precursors to induce the synthesis of novel porous nanomaterials as non‐noble‐metal electrocatalysts for sustainable energy conversion.  相似文献   

16.
Although with an extremely high theoretical capacity (3860 mA h g?1), the lithium (Li) metal anodes reported so far typically possess capacities of ≤5 mA h cm?2 and cyclable at currents of ≤5 mA cm?2. In this work, a hierarchal carbon scaffold is designed with the self‐growth of carbon nanotubes (CNTs) in nickel‐decorated melamine sponges via thermal annealing. It is found that the nitrogen‐doped carbon obtained from the melamine sponge, coupled with CNTs, provides an overall strong yet internally flexible host which enables an areal capacity of up to 15 mA h cm?2 cyclable at a charging/discharging current of 15 mA cm?2 as Li metal anodes. Characterizations show that the highly conductive yet uniformly distributed CNTs effectively suppress the local current density, leading to more uniform Li nucleation in Li plating. The flexible CNTs in the stiff scaffold enhance the tolerance to the stress caused by the intrinsic volume variation in Li plating/striping, resulting in the stable cycling performance at high currents. This study provides a potentially scalable and cost‐effective strategy for preparation of high‐performance Li‐metal anodes.  相似文献   

17.
Metal–organic frameworks (MOFs) have attracted tremendous interest due to their promising applications including electrocatalysis originating from their unique structural features. However, it remains a challenge to directly use MOFs for oxygen electrocatalysis because it is quite difficult to manipulate their dimension, composition, and morphology of the MOFs with abundant active sites. Here, a facile ambient temperature synthesis of unique NiCoFe‐based trimetallic MOF nanostructures with foam‐like architecture is reported, which exhibit extraordinary oxygen evolution reaction (OER) activity as directly used catalyst in alkaline condition. Specifically, the (Ni2Co1)0.925Fe0.075‐MOF‐NF delivers a minimum overpotential of 257 mV to reach the current density of 10 mA cm?2 with a small Tafel slope of 41.3 mV dec?1 and exhibits high durability after long‐term testing. More importantly, the deciphering of the possible origination of the high activity is performed through the characterization of the intermediates during the OER process, where the electrochemically transformed metal hydroxides and oxyhydroxides are confirmed as the active species.  相似文献   

18.
Electroless deposition via a spontaneous redox reaction between the metal precursor and support is believed to be a promising approach for the syntheses of supported metal nanoparticles (SMNPs). However, its widespread applications are significantly prohibited by the low reductivity and high cost of support. To overcome these shortcomings, a porous carbon (PC) is herein developed as a promising matrix for the electroless deposition of metal NPs. Benefiting from abundant oxygen‐based surface functional groups, the PC shows stronger reducibility (low redox potential) than conventional carbon substrate such as carbon nanotubes or graphene oxide, enabling a facile electroless deposition of Ir, Rh, and Ru NPs on its surface. These SMNPs exhibit an impressive electrocatalytic activity for the hydrogen evolution reaction (HER) or hydrogen oxidation reaction (HOR). For example, the Rh NP/PC can deliver an HER current density of 10 mA cm?2 with a small overpotential of 21 mV in 0.5 m H2SO4, while the Ru NP/PC exhibits excellent HOR activity in 0.1 m KOH in terms of high mass and surface specific exchange current density of 263 A g?1Ru and 0.227 mA cm?2Ru. The present strategy may open up opportunities for mass production of efficient supported NPs for diverse applications.  相似文献   

19.
Development of effective oxygen evolution reaction (OER) electrocatalysts has been intensively studied to improve water splitting efficiency and cost effectiveness in the last ten years. However, it is a big challenge to obtain highly efficient and durable OER electrocatalysts with overpotentials below 200 mV at 10 mA cm?2 despite the efforts made to date. In this work, the successful synthesis of supersmall α‐Ni(OH)2 is reported through electro‐oxidation of NiSe2 loaded onto carbon nanoarrays. The obtained α‐Ni(OH)2 shows excellent activity and long‐term stability for OER, with an overpotential of only 190 mV at the current density of 10 mA cm?2, which represents a highly efficient OER electrocatalyst. The excellent activity could be ascribed to the large electrochemical surface area provided by the carbon nanoarray, as well as the supersmall size (≈10 nm) of α‐Ni(OH)2 which possess a large number of active sites for the reaction. In addition, the phase evolution of α‐Ni(OH)2 from NiSe2 during the electro‐oxidation process was monitored with in situ X‐ray absorption fine structure (XAFS) analysis.  相似文献   

20.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号