首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In super high‐rise buildings with varying story heights, the wind‐induced inter‐story drifts might violate the specified limit. However, these effects have seldom been concerned in wind‐induced response analysis. The theory and application of equivalent static wind load (ESWL) for wind‐induced inter‐story drifts of super high‐rise buildings were studied in this paper. A spectral decomposition method suitable for multi‐point excitation problems was firstly proposed. The formula of ESWL targeting for largest inter‐story drift was derived. For more reasonable structural design, the ESWL for multiple targets including displacement atop of building and inter‐story drifts at all story levels is put forward, in which the dominant modal inertial forces are adopted as the based load vectors. The presented methods were finally verified by its application for the wind‐induced response analysis for a tallest super tall building in Guangzhou. The researched results showed that the proposed spectral decomposition method not only has the same precision as the complete quadratic combination method but also possesses higher computation efficiency. The ESWL for multiple targets produces the same static responses for all the specified wind‐induced response, so it is much more rational for wind‐resistant structural design. Meanwhile, it is more reasonable to select the wind‐induced responses in the same direction simultaneously as the targeted values for obtaining the required ESWLs; however, the ESWL targeting for the wind‐induced responses in all degrees of freedom would generate more queer and unrealistic ESWLs distribution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Drift is a dominant feature in tall‐building design and can dictate the selection of structural systems. Because a reliable estimate of actual drifts is crucial for controlling structural damage, estimating drift considering intricate details seems noteworthy. In order to estimate story drifts during massive quakes, seismic design provisions generally specify a deflection amplification factor (Cd) to amplify elastic design drifts. In most of these codes, the amount of Cd is calculated from line‐element models without considering panel zone effects, despite the panel zone intensifying the story drift considerably. Therefore, the effect of panel zone on the story drift and Cd has been investigated in the current paper. Because Cd is independent of the number of stories, 4‐story frames, as benchmarks for special steel moment frames, with different thicknesses of the panel zone, are used. The effect of panel zone is provided as a correction factor for Cd. The results show that the panel zone should be considered in the analytical models; otherwise, the story drift will be underestimated up to 35%. Finally, a relation has been derived to consider panel zone effects on Cd, as a function of the panel zone thickness.  相似文献   

3.
Application of orthogonal pairs of rollers on concave beds (OPRCB) isolating system to short‐ and mid‐rise buildings is presented in this paper. At first, the analytical formulation of the set of equations, governing the motion of Multi Degree of Freedom (MDOF) systems, isolated by OPRCB isolators, has been developed. Then, some multi‐story regular buildings of shear type have been considered, once on fixed bases and once installed on the OPRCB isolators. Next, some horizontal and vertical accelerograms of both far‐ and near‐fault earthquakes with low‐ to high‐frequency content, particularly those with remarkable peak ground displacement values, have been selected and normalized to three peak ground acceleration levels of 0.15 g, 0.35 g and 0.7 g, and their stronger horizontal component simultaneous with their vertical component have been used for response analysis of the considered buildings. Story drifts and absolute acceleration response histories of isolated buildings have been calculated by using a program, developed in MATLAB environment by using the fourth‐order Runge–Kutta method, considering the geometrically nonlinear behavior of isolators. Maximum relative displacement and story drifts as well as absolute acceleration responses of considered isolated buildings for various earthquakes have been compared with those of corresponding fixed‐base buildings to show the high efficiency of using OPRCB isolators in multi‐story and tall regular buildings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Active control is an alternative method to suppress the civil structural vibration, which is more effective than the passive control or strengthening the structural components. The performance of active control is dependent on the control strategy and the accuracy of the structural model. However, there always exist some uncertainties in the model, such as mass, damping and stiffness uncertainties. This paper presents a robust H controller design for civil structures with consideration of the parametric uncertainties. The formulation to extract the parametric uncertainties from the structural model matrices is proposed through the linear fractional transformations approach. The robust H controller design for the civil structures with the parametric uncertainties is achieved through the D‐K iteration method. The linear matrix inequality is then used in the H optimization procedure of the D‐K iteration. The robustness of the controller is first numerically validated by a four‐story building example and then experimentally corroborated by a shaking table test of a two‐story frame with one active mass damper. The results show that the robust H controller can consider the parametric uncertainties in the civil structural model and achieve the robust performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Recent work suggests that evaporative coolers increase the level and diversity of bioaerosols, but this association remains understudied in low‐income homes. We conducted a cross‐sectional study of metropolitan, low‐income homes in Utah with evaporative coolers (n = 20) and central air conditioners (n = 28). Dust samples (N = 147) were collected from four locations in each home and analyzed for dust‐mite allergens Der p1 and Der f1, endotoxins, and β‐(1 → 3)‐d ‐glucans. In all sample locations combined, Der p1 or Der f1 was significantly higher in evaporative cooler versus central air conditioning homes (OR = 2.29, 95% CI = 1.05‐4.98). Endotoxin concentration was significantly higher in evaporative cooler versus central air conditioning homes in furniture (geometric mean (GM) = 8.05 vs 2.85 EU/mg, P < .01) and all samples combined (GM = 3.60 vs 1.29 EU/mg, P = .03). β‐(1 → 3)‐d ‐glucan concentration and surface loads were significantly higher in evaporative cooler versus central air conditioning homes in all four sample locations and all samples combined (P < .01). Our study suggests that low‐income, evaporative cooled homes have higher levels of immunologically important bioaerosols than central air‐conditioned homes in dry climates, warranting studies on health implications and other exposed populations.  相似文献   

6.
Recent developments of resizing algorithms based on displacement participation factor have had a significant impact on drift design of high‐rise buildings. However, most drift design methods based on resizing algorithms have considered only lateral load and overlooked the effect of the vertical load in the calculation of member displacement participation factors. Therefore, in this paper, the practical drift design method of high‐rise buildings is presented in the form of a resizing algorithm by developing product integral modules required for the calculation of displacement participation factors with the consideration of both lateral and vertical loads. The effect of vertical load on the drift design model based on member displacement participation factors is investigated in detail using the verifying example of a 20‐story building structure. The drift design method in combination with the strength design module is then applied to the drift design of a 60‐story high‐rise building structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Mold particles from Aspergillus fumigatus, Penicillium chrysogenum, Aspergillus versicolor, and Stachybotrys chartarum have been linked to respiratory‐related diseases. We characterized X‐ray‐inactivated spores and hyphae fragments from these species by number of particles, morphology, and mycotoxin, β‐glucan and protease content/activity. The pro‐inflammatory properties of mold particles were examined in human bronchial epithelial cells (BEAS‐2B) and THP‐1 monocytes and phorbol 12‐myristate 13‐acetate (PMA)‐differentiated THP‐1. Spores from P. chrysogenum and S. chartarum contained some hyphae fragments, whereas the other preparations contained either spores or hyphae. Each mold species produced mainly one gelatin‐degrading protease that was either of the metallo‐ or serine type, while one remains unclassified. Mycotoxin levels were generally low. Detectable levels of β‐glucans were found mainly in hyphae particle preparations. PMA‐differentiated THP‐1 macrophages were by far the most sensitive model with effects in the order of 10 ng/cm2. Hyphae preparations of A. fumigatus and P. chrysogenum were more potent than respective spore preparations, whereas the opposite seems to be true for A. versicolor and S. chartarum. Hyphae fragments of A. fumigatus, P. chrysogenum, and A. versicolor enhanced the release of metalloprotease (proMMP‐9) most markedly. In conclusion, species, growth stage, and characteristics are all important factors for pro‐inflammatory potential.  相似文献   

8.
In this paper, the quantum‐behaved developed swarm optimizer is proposed for optimal design of real‐size building structures in which the quantum computing is introduced into the standard developed swarm optimizer. In this method, the position‐updating process for the search agents is conducted by simultaneous utilization of the so far best position of all particles, center of mass of all particles, so far best position of each particle, and the mean best position of all particles in which the first two of these aspects satisfy the exploration phase of the algorithm, whereas the other two are utilized for improving the exploitation phase of the proposed method. In order to evaluate the capability of the proposed method in dealing with difficult optimization problems, three real‐size building structures are considered, namely, a 10‐story building with 1,026 structural members, a 20‐story building with 3,860 members, and a 60‐story building with 8,272 members. The overall performance of the proposed quantum‐behaved developed swarm optimizer is compared with that of the standard developed swarm optimizer and other approaches. The obtained results proved that the proposed method is capable of providing better results for the considered examples than are the other algorithms.  相似文献   

9.
Steel moment‐resisting frames (SMRFs) are the most common type of structural systems used in steel structures. The first step of structural design for SMRFs starts with the selection of the structural sections on the basis of story drift limitation. ASCE 7 (2010) requires that the inelastic story drifts be obtained by multiplying the deflections determined by elastic analysis under design earthquake forces with a deflection amplification factor (Cd). For special moment‐resisting frames, Cd is given as 5.5 in ASCE 7 (2010). Lower Cd values will increase the overall inelastic response of the structure. On the other hand, the inelastic response of the structure is expected to be less severe when designed for higher Cd values. The performance objective is that the structure should sustain the inelastic deformation demand imposed due to design earthquake ground motions. This study aims at investigating the inelastic seismic response that low‐rise, medium‐rise and high‐rise SMRFs can experience under design earthquake ground motions and maximum considered earthquake (MCE) level ground motions and evaluating the deflection amplification factors (Cd) for SMRFs in a rational way. For this purpose, nonlinear dynamic time history and pushover analyses will be carried out on SMRFs with 4, 9 and 20 stories. The results indicate that the current practice for computing the inelastic story drifts for SMRFs is rational and the frames designed complying with the current code requirements can sustain the inelastic deformations imposed during design earthquake ground motions when seismically designed and detailed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Wood‐frame buildings (WFBs) are the most commonly used structural systems for residential applications in North America. Past researches have shown that WFBs are susceptible to soft‐story mechanisms. In this study, a simple, efficient, and economical retrofit strategy, which utilizes continuous pinned‐supported rigid spine columns (RSCs) over the height of the building, is proposed. The retrofit aims to provide uniform deformation through the height of the building to prevent soft‐story mechanisms. This retrofit strategy was applied to a six‐story WFB located in Vancouver, British Columbia, Canada. A three‐dimensional nonlinear finite element model of the prototype building was developed using OpenSees. A comprehensive parametric study was conducted to identify the most economical RSC design. Seismic performance of the prototype building, with and without the most economical RSC design, was assessed through extensive nonlinear time history analyses. Results showed that the proposed retrofit strategy can effectively improve the seismic behavior of WFBs to prevent soft‐story mechanisms.  相似文献   

11.
Steel‐framed modular buildings afford certain advantages, such as rapid and high‐quality construction. However, although steel‐framed modules have been adopted in several countries, most of them are limited to low‐to‐medium‐rise structures; modular high‐rise buildings are rare. This study proposes a feasible structural design solution for high‐rise buildings using a steel‐framed modular system. A 31‐story student hostel building in Hong Kong is redesigned as a steel‐framed modular building and used as a case study. The finite element models of the building are formulated, and the structural behaviors under wind and earthquake load scenarios are compared. Moreover, the structural design process used for the 31‐story building is applied to design a hypothetical 40‐story modular building to further examine the proposed design solution. The numerical analysis results indicate that the roof lateral displacements and interstory drift ratios of the redesigned modular building are within the allowable limits of design codes; moreover, the modular connections behave elastically under the most adverse loading scenarios. Accordingly, the proposed solution can be used to design steel‐framed modular buildings of up to 40 stories, while complying with relevant wind and seismic codes.  相似文献   

12.
Based on the multiple stripes analysis method and the first‐order second‐moment method, a seismic collapse risk assessment considering the modeling uncertainty is carried out for a 118‐story super high‐rise building with a typical mega‐frame/core‐tube/outrigger resisting system. The sensitivity of the median collapse capacity of the building to eight main parameters is analyzed, and then the modeling uncertainty is determined. Both the effects of the characterization methods of bidirectional ground motion intensities and the selection of the ground motion intensity measure (IM) on the aleatory randomness are investigated. The mean estimates approach and the confidence interval method are used to incorporate both the modeling uncertainty and the aleatory randomness, and then the annual collapse probability, the collapse probability at the maximum considered earthquake (MCE) intensity level and the acceptable values of the collapse margin ratios (CMRs) with different confidence levels for the building are calculated. The results show that the influence of the modeling uncertainty on the collapse capacity of the super high‐rise structure is negligible, the aleatory randomness caused by the record‐to‐record variability is significant, and an appropriate ground motion IM can significantly reduce the aleatory randomness.  相似文献   

13.
The procedure to obtain the inelastic demand curves for the multi‐degree‐of‐freedom system, composed of inter‐story shear versus inter‐story displacement curve is introduced. The demand curves are established by using mode spectrum method, and the dynamical characteristic of structure under different earthquake hazard levels is taken into account. The relation of structure performance object and displacement ductility is adopted to deduce the relation of structure performance object and inter‐story demand curve. Therefore, the inter‐story demand curves take into account the inelastic behavior of structure under earthquake action adequately. Then, considering the seismic responding characteristic and the capacity curve of the frame structure, a new method named Inter‐Story Capacity Spectrum (ISCS) is put forward for the performance‐based seismic design of vertically irregular frame structures. Examples are presented to demonstrate the applicability and the utility of the proposed method. It is concluded that the new method can control the inter‐story drift, the order and position of hinges of vertically irregular structures under different earthquake hazard levels. Comparing with time‐history analysis method, it leans to safe and is superior to direct displacement‐based design method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The secondary alcohol 3‐methyl‐1‐butanol (3MB, isoamyl alcohol) is used, for example, as a solvent in a variety of applications and as a fragrance ingredient. It is also one of the microbial volatile organic compounds (MVOCs) found in indoor air. There are little data on acute effects. The aim of the study was to assess the acute effects of 3MB in humans. Thirty healthy volunteers (16 men and 14 women) were exposed in random order to 1 mg/m3 3MB or clean air for 2 h at controlled conditions. Ratings with visual analogue scales revealed slightly increased perceptions of eye irritation (P = 0.048, Wilcoxon) and smell (P < 0.0001) compared with control exposure. The other ratings were not significantly affected (irritation in nose and throat, dyspnea, headache, fatigue, dizziness, nausea, and intoxication). No significant exposure‐related effects were found in blinking frequency, tear film break‐up time, vital staining of the eye, nasal lavage biomarkers, lung function, and nasal swelling. In conclusion, this study suggests that 3MB is not a causative factor for health effects in damp and moldy buildings.  相似文献   

15.
An optimal drift design model for a linear multi‐story building structure under dynamic lateral forces is presented. The drift design model is formulated into a minimum weight design problem subjected to constraints on stresses, the displacement at the top of a building, and inter‐story drift. The optimal drift design model consists of three main components: an optimizer, a response spectrum analysis module, and a sensitivity analysis module. Using a small example, the validation of the proposed model has been tested by a comparison of optimal solutions. Then, the performance of the optimal drift design model is demonstrated by application to three steel frame structures including a 40‐story building. Various structural responses including lateral displacement and inter‐story drift distributions along the height of the structure at the initial and final design stages are presented in figures and tables. Time‐consuming trial‐and‐error processes related to drift control of a tall building subjected to lateral loads is avoided by the proposed optimal drift design method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
This paper discusses the collapse behavior of low‐rise plan‐asymmetric buildings under bi‐directional horizontal ground motions and utilizing strength and stiffness degrading nonlinear models. For this purpose, three‐dimensional three‐story and six‐story reinforced concrete frame buildings with uni‐directional mass eccentricities equal to 0% (symmetrical), 10%, 20% and 30% are subjected to nonlinear static (pushover) as well as incremental dynamic analyses using a set of far‐field two‐component ground motions and their performance are assessed on the basis of the safety margin against collapse and its probability of occurrence. Comparison of the collapse margin ratios as well as the fragility curves demonstrates significant reduction of the collapse‐level ground motion intensity with increasing eccentricity in plan. Results also indicate that current seismic design parameters including the response modification (R), overstrength (Ω) and ductility (μ) factors are not appropriate for buildings with high levels of plan eccentricity. Buildings with high values of plan eccentricity do not meet the design target life safety performance level on the basis of the calculated probability of collapse and safety margin against collapse. It appears that re‐evaluation of their design parameters is necessary. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The dynamic analysis of structural stability with consideration of material and geometrical non‐linearity is necessary for near fault‐earthquake that is rich in long‐period components and often induces the non‐linear large displacement and deformation response of a building structure. A macro‐element bilinear geometric stiffness model and simplified analytical model are proposed and developed to analyze the P‐Δ effects of structural dynamic response using a numerical approach. A structural stable threshold diagram is then proposed to evaluate the geometric stability of a building structure with large deformation under the excitation of a near‐fault earthquake. The analysis results reveal: (1) the simplified geometric stiffness analytical model is useful for analyzing structural dynamic P‐Δ effects and acquire very good accurate results even though the structural geometric stiffness varies between elastic and plastic zone; (2) stable threshold diagrams, based on dynamic analysis and statistical analysis procedures, are conducted by application of this proposed model to easily evaluate structural geometric stability with larger deformation imposed by a near‐fault earthquake. This method can supplement the insufficient capability for the static pushover analysis procedure to estimate the seismic proof demands for building without dynamic P‐Δ effects analysis; (3) the analysis results of stable threshold diagrams indicate that when stability coefficient θ of a building is greater than 1 or base shear factor (V/W) of the building is less than 0·2, static P‐Δ effects become noticeable. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A series of large‐scale shaking table tests are conducted on tall buildings with and without energy dissipation devices on soft soils in pile group foundations, representing pile‐soil‐structure interaction (PSSI) system and the corresponding fixed‐base situations. The superstructure is a 12‐story reinforced concrete (RC) frame. The dynamic characteristics of the test models show that the frequencies decrease and the damping ratio increase in PSSI system by comparison with the fixed‐base structures. The mode shapes of PSSI system are different from that under fixed‐base condition, and the mode shapes of structure without dampers change greater than that with energy dissipation devices under various white noises. An improved method for structural dynamic characteristics, considering the impedance function of piles, is developed to address the issue of modal parameters with PSSI effect. In addition, the structural dynamic parameters of the large‐scale shaking table tests are identified using the modification method and other regulation methods, demonstrating that the improved approach is highly accurate and effective. Subsequently, a design procedure for viscous dampers of structures with PSSI effect is presented based on the dynamic characteristics of the system. Finally, the dynamic responses of the structure with viscous dampers in the practical engineering are decreased effectively, indicating the good performance of designed viscous dampers. The numerical results also show that the damping efficiency of interstory drift is larger than the acceleration and interstory shear force. Therefore, the improved modal parameters method, validated through a series large‐scale shaking table tests, is applicable for identifying dynamic characteristics of pile‐soil‐structure with energy dissipation devices system. The design procedure of viscous dampers, proved by a reinforced concrete frame structure located on a practical Shanghai soft site, can be employed to design the viscous dampers considering seismic PSSI effect.  相似文献   

19.
Outriggers are usually added in structural systems of tall buildings to collaborate central shear walls with peripheral columns. With outriggers, the structural overturning moment can be balanced, and the inter‐story drift can be controlled under horizontal loads. Therefore, the optimal location of outriggers plays a very important role in controlling the behavior of the whole building. Existing research has focused on the optimal position of outriggers on the base of the structural roof deflection. In the engineering practice, however, inter‐story drift is the most important target to control the design of tall building structures. This paper investigates the theoretical method of inter‐story drift‐based optimal location of outriggers. A Matlab program is written to perform the parameter analysis of optimal location of outriggers. Take a 240‐m tall building for a target building, the optimal location of one to three sets of outriggers under wind and earthquakes is obtained and can be utilized for the structural preliminary design of tall buildings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, an iterative step‐by‐step procedure is proposed for optimal placement and design of viscoelastic dampers in order to achieve a target damping ratio based on simple equations and quick estimation. Through the procedure, the dampers are placed one by one in stories with maximum interstory drift at each sequence. Effect of lateral stiffness of added dampers and consequent changes in frequency of the structure as well as changes in damping characteristic of the structure after adding each damper are also considered at each sequence. In order to achieve an economical design, dampers are designed according to the lateral stiffness at each story of the main structure instead of using identical dampers in all stories. During the whole procedure, a time‐history analysis is performed at each sequence. Two numerical examples, including an 8‐story and a 15‐story building, are presented. The results indicate that optimal arrangement of dampers has a considerable influence on reduction of roof displacement up to 25% compared to uniformly distributed arrangement of dampers. In addition, with optimal arrangement, the number of dampers needed to achieve a specific interstory drift is significantly reduced, and the structural damping ratio is improved to a target value, reflecting global optimality of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号