首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 576 毫秒
1.
Modern engineering systems have become increasingly complex and at the same time are expected to be developed faster. To shorten the product development time, organizations commonly conduct accelerated testing on a small number of units to help identify failure modes and assess reliability. Many times design changes are made to mitigate or reduce the likelihood of such failure modes. Since failure-time data are often scarce in reliability growth programs, existing statistical approaches used for predicting the reliability of a system about to enter the field are faced with significant challenges. In this work, a statistical model is proposed to utilize degradation data for system reliability prediction in an accelerated reliability growth program. The model allows the components in the system to have multiple failure modes, each associated with a monotone stochastic degradation process. To take into account unit-to-unit variation, the random effects of degradation parameters are explicitly modeled. Moreover, a mean-degradation-stress relationship is introduced to quantify the effects of different accelerating variables on the degradation processes, and a copula function is utilized to model the dependency among different degradation processes. Both a maximum likelihood (ML) procedure and a Bayesian alternative are developed for parameter estimation in a two-stage process. A numerical study illustrates the use of the proposed model and identifies the cases where the Bayesian method is preferred and where it is better to use the ML alternative.  相似文献   

2.
In the analysis of accelerated life testing (ALT) data, some stress‐life model is typically used to relate results obtained at stressed conditions to those at use condition. For example, the Arrhenius model has been widely used for accelerated testing involving high temperature. Motivated by the fact that some prior knowledge of particular model parameters is usually available, this paper proposes a sequential constant‐stress ALT scheme and its Bayesian inference. Under this scheme, test at the highest stress is firstly conducted to quickly generate failures. Then, using the proposed Bayesian inference method, information obtained at the highest stress is used to construct prior distributions for data analysis at lower stress levels. In this paper, two frameworks of the Bayesian inference method are presented, namely, the all‐at‐one prior distribution construction and the full sequential prior distribution construction. Assuming Weibull failure times, we (1) derive the closed‐form expression for estimating the smallest extreme value location parameter at each stress level, (2) compare the performance of the proposed Bayesian inference with that of MLE by simulations, and (3) assess the risk of including empirical engineering knowledge into ALT data analysis under the proposed framework. Step‐by‐step illustrations of both frameworks are presented using a real‐life ALT data set. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The traditional reliability demonstration testing based on statistical method requires a large number of samples and long testing time, failing to satisfy the demand for short cycle and low cost. This paper proposes a new accelerated approach for determining reliability target of each environment stress, accelerated test profile, and comprehensive acceleration factor for multi‐failure mode product to conduct assembly level accelerated demonstration testing under multiple stresses and levels. By decomposing the product from four levels, namely function, structure, mechanism, and stress, the products' weaknesses can be identified. The main failure modes and sensitive environmental stresses are determined based on environmental profile and FMMEA. In this design, the reliability is apportioned to each actual environmental stress by AHP. And the SSI model is used to establish accelerated stress profile. The overall acceleration factor can be derived from the model of assembly level accelerated testing. Combined with a statistical plan, the accelerated reliability demonstration testing plan and test profile is built. A case example is presented to illustrate the effectiveness of the proposed approach. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Xiao Liu 《技术计量学》2013,55(4):398-409
Accelerated life tests (ALT) provide timely information on product reliability. As product complexity increases, ALT often generate multiple dependent failure modes. However, the planning of an ALT with dependent failure modes has not been well studied in the literature. This article investigates the statistical modeling and planning of ALT with multiple dependent failure modes. An ALT model is constructed. Associated with each failure mode there is a latent lifetime described by a log-location-scale distribution, and the statistical dependence between different failure modes is described by a Gamma frailty model. The proposed model incorporates the ALT model with independent failure modes as a special limiting case. We obtain the c-optimal test plans by minimizing the large-sample approximate variance of the maximum likelihood estimator of a certain life quantile at use condition. The method is illustrated by developing ALT plans for field-effect transistors with competing gate oxide breakdown. A sensitivity analysis is performed to investigate the robustness of the optimal ALT plan against misspecification of model parameter values. This article has supplementary materials that are available online.  相似文献   

5.
Most maintenance optimization models of gear systems have considered single failure mode. There have been very few papers dealing with multiple failure modes, considering mostly independent failure modes. In this paper, we present an optimal Bayesian control scheme for early fault detection of the gear system with dependent competing risks. The system failures include degradation failure and catastrophic failure. A three‐state continuous‐time–homogeneous hidden Markov model (HMM), namely the model with unobservable healthy and unhealthy states, and an observable failure state, describes the deterioration process of the gear system. The condition monitoring information as well as the age of the system are considered in the proposed optimal Bayesian maintenance policy. The objective is to maximize the long‐run expected average system availability per unit time. The maintenance optimization model is formulated and solved in a semi‐Markov decision process (SMDP) framework. The posterior probability that the system is in the warning state is used for the residual life estimation and Bayesian control chart development. The prediction results show that the mean residual lives obtained in this paper are much closer to the actual values than previously published results. A comparison with the Bayesian control chart based on the previously published HMM and the age‐based replacement policy is given to illustrate the superiority of the proposed approach. The results demonstrate that the Bayesian control scheme with two dependent failure modes can detect the gear fault earlier and improve the availability of the system.  相似文献   

6.
When newly designed refrigerator parts failed due to repetitive loads under consumer usage conditions in the field, a general method for reliability design was proposed. A newly designed refrigerator compressor system that brings greater energy efficiency to side-by-side (SBS) refrigerators was studied. The laboratory failure mode and mechanism of the compressor was a stopping nose due to design flaws. The data on the failed products in the field, accelerated life tests (ALT) and corrective action plans were used to identify the key control parameters for the mechanical compressor system. The missing controllable design parameters of the compressor system in the design phase were the gap between the frame and the upper due to the stator frame shape. After a tailored series of accelerated life tests with corrective action plans, the B1 life of the new compressor system is now guaranteed to be over 10 years with a yearly failure rate of 0.1%.  相似文献   

7.
Accelerated life testing (ALT) design is usually performed based on assumptions of life distributions, stress–life relationship, and empirical reliability models. Time‐dependent reliability analysis on the other hand seeks to predict product and system life distribution based on physics‐informed simulation models. This paper proposes an ALT design framework that takes advantages of both types of analyses. For a given testing plan, the corresponding life distributions under different stress levels are estimated based on time‐dependent reliability analysis. Because both aleatory and epistemic uncertainty sources are involved in the reliability analysis, ALT data is used in this paper to update the epistemic uncertainty using Bayesian statistics. The variance of reliability estimation at the nominal stress level is then estimated based on the updated time‐dependent reliability analysis model. A design optimization model is formulated to minimize the overall expected testing cost with constraint on confidence of variance of the reliability estimate. Computational effort for solving the optimization model is minimized in three directions: (i) efficient time‐dependent reliability analysis method; (ii) a surrogate model is constructed for time‐dependent reliability under different stress levels; and (iii) the ALT design optimization model is decoupled into a deterministic design optimization model and a probabilistic analysis model. A cantilever beam and a helicopter rotor hub are used to demonstrate the proposed method. The results show the effectiveness of the proposed ALT design optimization model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Various adaptive reliability analysis methods based on surrogate models have recently been developed. A multi-mode failure boundary exploration and exploitation framework (MFBEEF) was proposed for system reliability assessment using the adaptive kriging model based on sample space partitioning to reduce computational cost and use the characteristics of the failure boundary in multiple failure mode systems. The efficiency of the adaptive construction of kriging model can be improved by using the characteristics of the center sample of the small space to represent the characteristics of all samples in the small space. This method proposes a failure boundary exploration and exploitation strategy and a convergence criterion based on the maximum failure probability error for a system with multiple failure modes to adaptively approximate the failure boundary of a system with multiple failure modes. A multiple-failure-mode learning function was used to identify the optimal training sample to gradually update the kriging model during the failure boundary exploration and exploitation stages. In addition, a complex failure boundary-oriented adaptive hybrid importance sampling method was developed to improve the applicability of the MFBEEF method to small failure probability assessments. Finally, the MFBEEF method was proven to be effective using five system reliability analysis examples: a series system, a parallel system, a series–parallel hybrid system, a multi-dimensional series system with multiple failure modes, and an engineering problem with multiple implicit performance functions.  相似文献   

9.
Accelerated life testing (ALT) is widely used in high-reliability product estimation to get relevant information about an item's performance and its failure mechanisms. To analyse the observed ALT data, reliability practitioners need to select a suitable accelerated life model based on the nature of the stress and the physics involved. A statistical model consists of (i) a lifetime distribution that represents the scatter in product life and (ii) a relationship between life and stress. In practice, several accelerated life models could be used for the same failure mode and the choice of the best model is far from trivial. For this reason, an efficient selection procedure to discriminate between a set of competing accelerated life models is of great importance for practitioners. In this paper, accelerated life model selection is approached by using the Approximate Bayesian Computation (ABC) method and a likelihood-based approach for comparison purposes. To demonstrate the efficiency of the ABC method in calibrating and selecting accelerated life model, an extensive Monte Carlo simulation study is carried out using different distances to measure the discrepancy between the empirical and simulated times of failure data. Then, the ABC algorithm is applied to real accelerated fatigue life data in order to select the most likely model among five plausible models. It has been demonstrated that the ABC method outperforms the likelihood-based approach in terms of reliability predictions mainly at lower percentiles particularly useful in reliability engineering and risk assessment applications. Moreover, it has shown that ABC could mitigate the effects of model misspecification through an appropriate choice of the distance function.  相似文献   

10.
Usually, for high reliability products the production cost is high and the lifetime is much longer, which may not be observable within a limited time. In this paper, an accelerated experiment is employed in which the lifetime follows an exponential distribution with the failure rate being related to the accelerated factor exponentially. The underlying parameters are also assumed to have the exponential prior distributions. A Bayesian zero‐failure reliability demonstration test is conducted to design forehand the minimum sample size and testing length subject to a certain specified reliability criterion. Probability of passing the test design as well as predictive probability for additional experiments is also derived. Sensitivity analysis of the design is investigated by a simulation study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Software reliability assessment models in use today treat software as a monolithic block. An aversion towards ‘atomic' models seems to exist. These models appear to add complexity to the modeling, to the data collection and seem intrinsically difficult to generalize. In 1997, we introduced an architecturally based software reliability model called FASRE. The model is based on an architecture derived from the requirements which captures both functional and nonfunctional requirements and on a generic classification of functions, attributes and failure modes. The model focuses on evaluation of failure mode probabilities and uses a Bayesian quantification framework. Failure mode probabilities of functions and attributes are propagated to the system level using fault trees. It can incorporate any type of prior information such as results of developers' testing, historical information on a specific functionality and its attributes, and, is ideally suited for reusable software. By building an architecture and deriving its potential failure modes, the model forces early appraisal and understanding of the weaknesses of the software, allows reliability analysis of the structure of the system, provides assessments at a functional level as well as at a systems' level. In order to quantify the probability of failure (or the probability of success) of a specific element of our architecture, data are needed. The term element of the architecture is used here in its broadest sense to mean a single failure mode or a higher level of abstraction such as a function. The paper surveys the potential sources of software reliability data available during software development. Next the mechanisms for incorporating these sources of relevant data to the FASRE model are identified.  相似文献   

12.
The accelerated life testing (ALT) is frequently used in examining the component reliability and acceptance testing. The ALT is carried out by exposing the unit to higher stress levels in order to observe data faster than those are producing under the normal conditions. The simple step-stress model based on type-II censoring Weibull lifetimes is studied here. In addition, the lifetimes satisfy Khamis-Higgins model assumption. In this paper, Bayesian approaches are developed for estimating the model parameters and predicting times to failure of future censored of the simple step-stress model from Weibull distribution using Khamis-Higgins model. The main goal of this work consists of two parts. First, the Bayesian estimation of the unknown parameters involved in the model is considered by adopting Devroye method to generate log-concave densities within sampling-based algorithm under different loss functions. The Bayes and highest posterior density credible intervals are then established. Second, the estimation of the posterior predictive density of the future lifetimes are discussed to obtain the point and prediction intervals with a given coverage probability. Monte Carlo simulation is performed to check the efficiency of the developed procedures and analyze a real data set for illustrative purposes.  相似文献   

13.
This paper presents a comprehensive framework for reliability prediction during the product development process. Early in the product development process, there is typically little or no quantitative evidence to predict the reliability of the new concept except indirect or qualitative information. The proposed framework addresses the issue of utilizing qualitative information in the reliability analysis. The framework is based on the Bayesian approach. The fuzzy logic theory is used to enhance the capability of the Bayesian approach to deal with qualitative information. This paper proposes to extract the information from various design tools and design review records and incorporate it into the Bayesian framework through a fuzzy inference system. The Weibull distribution is considered as failure/survival time distribution with the assumption of a known value of shape factor. Initial parameters of the Weibull distribution are estimated from warranty data of prior systems to estimate the initial Bayesian parameter ( λt). The applicability of the framework is illustrated via an example.  相似文献   

14.
In this paper, a Cox proportional hazard model with error effect applied on the study of an accelerated life test is investigated. Statistical inference under Bayesian methods by using the Markov chain Monte Carlo techniques is performed in order to estimate the parameters involved in the model and predict reliability in an accelerated life testing. The proposed model is applied to the analysis of the knock sensor failure time data in which some observations in the data are censored. The failure times at a constant stress level are assumed to be from a Weibull distribution. The analysis of the failure time data from an accelerated life test is used for the posterior estimation of parameters and prediction of the reliability function as well as the comparisons with the classical results from the maximum likelihood estimation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The compressor in a commercial refrigerator was redesigned to improve its reliability. The compressor used in the refrigerator had been failing due to fracturing of the suction reed valve. Failure analysis, accelerated life tests and corrective action plans were used to identify the key control parameters and levels for the mechanical compressor system. The failure modes and mechanisms found experimentally were similar to those of the failed sample in the field. The missing controllable design parameters of the compressor system in the design phase were an overlap with the valve plate, a weak material [SANDVIK 20C 178t], and the sharp edge of the valve plate. After a tailored series of accelerated life tests with corrective action plans, the reliability of the new compressor system is now guaranteed to be 12.6 years with a yearly failure rate of 0.06%.  相似文献   

16.
A common problem of reliability demonstration testing (RDT) is the magnitude of total time on test required to demonstrate reliability to the consumer’s satisfaction, particularly in the case of high reliability components. One solution is the use of accelerated life testing (ALT) techniques. Another is to incorporate prior beliefs, engineering experience, or previous data into the testing framework. This may have the effect of reducing the amount of testing required in the RDT in order to reach a decision regarding conformance to the reliability specification. It is in this spirit that the use of a Bayesian approach can, in many cases, significantly reduce the amount of testing required.We demonstrate the use of this approach to estimate the acceleration factor in the Arrhenius reliability model based on long-term data given by a manufacturer of electronic components (EC). Using the Bayes approach we consider failure rate and acceleration factor to vary randomly according to some prior distributions. Bayes approach enables for a given type of technology the optimal choice of test plan for RDT under accelerated conditions when exacting reliability requirements must be met. These requirements are given by a hypothetical consumer by two different ways. The calculation of posterior consumer’s risk is demonstrated in both cases.The test plans are optimum in that they take into account Var{λ|data}, posterior risk, E{λ|data}, Median λ or other percentiles of λ at data observed at the accelerated conditions. The test setup assumes testing of units with time censoring.  相似文献   

17.
Due to the propagation, amplification, and concatenation in a failure process, the reliabilities of repairable multistate complex mechanical systems (RMCMSs) may be affected by a significant fluctuation due to a small exception associated with a reliability indicator. Focused on the problems arising from the lack of propagation relationships among fault modes, functional components, and failure causes in conventional reliability models, a novel framework for reliability modelling is proposed to comprehensively analyse the reliabilities of RMCMSs. First, the reliability models are abstracted as weighted and directed networks with five layers. Second, an improved failure mode and effects analysis (IFMEA) method combined with the D‐number method and VIKOR approach is presented to determine the importance of reliability nodes. Third, a cut set of the reliability model is generated by any exception of a reliability indicator by considering the propagation relationships, and the reliability sensibility index is defined to characterize the fluctuations in system reliability. The effectiveness of the proposed framework is demonstrated in an actual reliability modelling application. As an intuitive method, the proposed framework inherits the advantages of conventional models but overcomes the drawbacks of these existing methods. Therefore, this method can be flexibly and efficiently used in the reliability modelling of RMCMSs. Moreover, the approach provides a foundation for comprehensive and dynamic reliability analysis and the failure mechanism mining of RMCMSs, and it can be used in other engineering applications.  相似文献   

18.
This paper develops a methodology to integrate reliability testing and computational reliability analysis for product development. The presence of information uncertainty such as statistical uncertainty and modeling error is incorporated. The integration of testing and computation leads to a more cost-efficient estimation of failure probability and life distribution than the tests-only approach currently followed by the industry. A Bayesian procedure is proposed to quantify the modeling uncertainty using random parameters, including the uncertainty in mechanical and statistical model selection and the uncertainty in distribution parameters. An adaptive method is developed to determine the number of tests needed to achieve a desired confidence level in the reliability estimates, by combining prior computational prediction and test data. Two kinds of tests — failure probability estimation and life estimation — are considered. The prior distribution and confidence interval of failure probability in both cases are estimated using computational reliability methods, and are updated using the results of tests performed during the product development phase.  相似文献   

19.
The objective of this paper is to present an efficient computational methodology for the reliability optimization of electronic devices under cost constraints. The system modeling for calculating the reliability indices of the electronic devices is based on Bayesian networks using the fault tree approach, in order to overcome the limitations of the series–parallel topology of the reliability block diagrams. Furthermore, the Bayesian network modeling for the reliability analysis provides greater flexibility for representing multiple failure modes and dependent failure events, and simplifies fault diagnosis and reliability allocation. The optimal selection of components is obtained using the simulated annealing algorithm, which has proved to be highly efficient in complex optimization problems where gradient‐based methods can not be applied. The reliability modeling and optimization methodology was implemented into a computer program in Matlab using a Bayesian network toolbox. The methodology was applied for the optimal selection of components for an electrical switch of power installations under reliability and cost constraints. The full enumeration of the solution space was calculated in order to demonstrate the efficiency of the proposed optimization algorithm. The results obtained are excellent since a near optimum solution was found in a small fraction of the time needed for the complete enumeration (3%). All the optimum solutions found during consecutive runs of the optimization algorithm lay in the top 0.3% of the solutions that satisfy the reliability and cost constraints. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Based on field data and a tailored set of accelerated life testing, the dispenser lever of the water dispensing system in a bottom-mounted freezer (BMF) was redesigned. Using force and moment balances, the simple mechanical loads of the dispensing process were analyzed. The failure modes and mechanisms found experimentally were similar to those of the failed samples returned from the field. Failure analysis, accelerated life testing (ALT) and corrective action plans were used to identify the key control parameters and level of the mechanical dispenser lever. The missing controllable design parameters of the dispenser lever in the design phase included corner rounding, rib thickness, and front lever thickness. The B1 life of the new design is now guaranteed to be over 10 years with a yearly failure rate of 0.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号