首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Membrane separation technologies are of great interest in industrial processes such as water purification, gas separation, and materials synthesis. However, commercial filtration membranes have broad pore size distributions, leading to poor size cutoff properties. In this work, mesoporous silica thin membranes with uniform and large vertical mesochannels are synthesized via a simple biphase stratification growth method, which possess an intact structure over centimeter size, ultrathin thickness (≤50 nm), high surface areas (up to 1420 m2 g?1), and tunable pore sizes from ≈2.8 to 11.8 nm by adjusting the micelle parameters. The nanofilter devices based on the free‐standing mesoporous silica thin membranes show excellent performances in separating differently sized gold nanoparticles (>91.8%) and proteins (>93.1%) due to the uniform pore channels. This work paves a promising way to develop new membranes with well‐defined pore diameters for highly efficient nanosize‐based separation at the macroscale.  相似文献   

2.
The slow development of cost‐effective medical microdevices with strong analytical performance characteristics is due to a lack of selective and efficient analyte capture and signaling. The recently developed programmable nano‐bio‐chip (PNBC) is a flexible detection device with analytical behavior rivaling established macroscopic methods. The PNBC system employs ≈300 μm‐diameter bead sensors composed of agarose “nanonets” that populate a microelectromechanical support structure with integrated microfluidic elements. The beads are an efficient and selective protein‐capture medium suitable for the analysis of complex fluid samples. Microscopy and computational studies probe the 3D interior of the beads. The relative contributions that the capture and detection of moieties, analyte size, and bead porosity make to signal distribution and intensity are reported. Agarose pore sizes ranging from 45 to 620 nm are examined and those near 140 nm provide optimal transport characteristics for rapid (<15 min) tests. The system exhibits efficient (99.5%) detection of bead‐bound analyte along with low (≈2%) nonspecific immobilization of the detection probe for carcinoembryonic antigen assay. Furthermore, the role analyte dimensions play in signal distribution is explored, and enhanced methods for assay building that consider the unique features of biomarker size are offered.  相似文献   

3.
The slow development of cost-effective medical microdevices with strong analytical performance characteristics is due to a lack of selective and efficient analyte capture and signaling. The recently developed programmable bio-nano-chip (PBNC) is a flexible detection device with analytical behavior rivaling established macroscopic methods. The PBNC system employs ≈300 μm-diameter bead sensors composed of agarose "nanonets" that populate a microelectromechanical support structure with integrated microfluidic elements. The beads are an efficient and selective protein-capture medium suitable for the analysis of complex fluid samples. Microscopy and computational studies probe the 3D interior of the beads. The relative contributions that the capture and detection of moieties, analyte size, and bead porosity make to signal distribution and intensity are reported. Agarose pore sizes ranging from 45 to 620 nm are examined and those near 140 nm provide optimal transport characteristics for rapid (<15 min) tests. The system exhibits efficient (99.5%) detection of bead-bound analyte along with low (≈2%) nonspecific immobilization of the detection probe for carcinoembryonic antigen assay. Furthermore, the role analyte dimensions play in signal distribution is explored, and enhanced methods for assay building that consider the unique features of biomarker size are offered.  相似文献   

4.
This study reports a double‐targeting “nanofirework” for tumor‐ignited imaging to guide effective tumor‐depth photothermal therapy (PTT). Typically, ≈30 nm upconversion nanoparticles (UCNP) are enveloped with a hybrid corona composed of ≈4 nm CuS tethered hyaluronic acid (CuS‐HA). The HA corona provides active tumor‐targeted functionality together with excellent stability and improved biocompatibility. The dimension of UCNP@CuS‐HA is specifically set within the optimal size window for passive tumor‐targeting effect, demonstrating significant contributions to both the in vivo prolonged circulation duration and the enhanced size‐dependent tumor accumulation compared with ultrasmall CuS nanoparticles. The tumors featuring hyaluronidase (HAase) overexpression could induce the escape of CuS away from UCNP@CuS‐HA due to HAase‐catalyzed HA degradation, in turn activating the recovery of initially CuS‐quenched luminescence of UCNP and also driving the tumor‐depth infiltration of ultrasmall CuS for effective PTT. This in vivo transition has proven to be highly dependent on tumor occurrence like a tumor‐ignited explosible firework. Together with the double‐targeting functionality, the pathology‐selective tumor ignition permits precise tumor detection and imaging‐guided spatiotemporal control over PTT operation, leading to complete tumor ablation under near infrared (NIR) irradiation. This study offers a new paradigm of utilizing pathological characteristics to design nanotheranostics for precise detection and personalized therapy of tumors.  相似文献   

5.
The filtration performance and light transmittance of nanofiber air filters are restricted by their thick fiber diameter, large pore size, and substrate dependence, which can be solved by constructing substrate‐free fibrous membranes with true nanoscale diameters and ultrathin thicknesses, however, it has proven to be extremely challenging. Herein, a roust approach is presented to create free‐standing polyurethane (PU) nanofiber/nets air filters composed of bonded nanofibers and 2D nanonets for particular matter (PM) capture via combining electrospinning/netting technique and facile peel off process from designed substrates. This strategy causes widely distributed Steiner‐tree structured nanonets with diameters of ≈20 nm and bonded scaffold nanofibers to assemble into ultrathin membranes with small pore size, high porosity, and robust mechanical strength on a large scale based on ionic liquid inspiration and surface structure optimization of receiver substrates. As a consequence, the resulting free‐standing PU nanofiber/nets filters exhibit high PM1–0.5 removal efficiency of >99.00% and PM2.5–1 removal efficiency of >99.73%, maintaining high light transmittance of ≈70% and low pressure drop of 28 Pa; even achieve >99.97% removal efficiency with ≈40% transmittance for PM0.3 filtration, and robust purification capacity for real smoke PM2.5, making them promising high‐efficiency and transparent filtration materials for various filtration and separation applications.  相似文献   

6.
Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting “nanoparticle‐loaded nanoparticles” to address the long‐lasting problem is reported for effective surface‐to‐core drug delivery in entire 3D tumors. The “nanoparticle‐loaded nanoparticle” is a silica nanoparticle (≈150 nm) with well‐developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)‐loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface‐to‐core tumor tissues, and finally (3) release a drug triggered by cancer‐characteristic pH gradients. The hierarchical “nanoparticle‐loaded nanoparticle” can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs.  相似文献   

7.
Porous carbon nitride (CN) spheres with partially crystalline frameworks have been successfully synthesized via a nanocasting approach by using spherical mesoporous cellular silica foams (MCFs) as a hard template, and ethylenediamine and carbon tetrachloride as precursors. The resulting spherical CN materials have uniform diameters of ca. 4 μm, hierarchical three-dimensional (3-D) mesostructures with small and large mesopores with pore diameters centered at ca. 4.0 and 43 nm, respectively, a relatively high BET surface area of ∼550 m2/g, and a pore volume of 0.90 cm3/g. High-resolution transmission electron microscope (HRTEM) images, wide-angle X-ray diffraction (XRD) patterns, and Raman spectra demonstrate that the porous CN material has a partly graphitized structure. In addition, elemental analyses, X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FT-IR), and CO2 temperature-programmed desorption (CO2-TPD) show that the material has a high nitrogen content (17.8 wt%) with nitrogen-containing groups and abundant basic sites. The hierarchical porous CN spheres have excellent CO2 capture properties with a capacity of 2.90 mmol/g at 25 °C and 0.97 mmol/g at 75 °C, superior to those of the pure carbon materials with analogous mesostructures. This can be mainly attributed to the abundant nitrogen-containing basic groups, hierarchical mesostructure, relatively high BET surface area and stable framework. Furthermore, the presence of a large number of micropores and small mesopores also enhance the CO2 capture performance, owing to the capillary condensation effect.  相似文献   

8.
The synthesis of ultrasmall, well‐dispersed, hollow siliceous spheres (HSSs) by using a block copolymer as the template and tetraethoxysilane as a silica source under acidic conditions is reported. After removing the surfactant core of as‐synthesized, spherical, silica‐coated block‐copolymer micelles, HSSs with a uniform particle size of 24.7 nm, a cavity diameter of 11.7 nm, and a wall thickness of 6.5 nm are obtained. It is shown that by surface functionalization of HSSs with methyl groups during synthesis, HSSs can be further dispersed in solvents such as water or ethanol to form a stable sol. Moreover, the hollow cavities are accessible for further loading of functional components. In addition, it is demonstrated that HSSs possess superior endocytosis properties for HeLa cells compared to those of conventional mesoporous silica nanoparticles. A feasible and designable strategy for synthesizing novel well‐dispersed hollow structures with ultrasmall diameters instead of conventional ordered mesostructures is provided. It is expected that HSSs may find broad applications in bionanotechnology, such as drug carriers, cell imaging, and targeted therapy.  相似文献   

9.
A rationally designed two‐step synthesis of silica vesicles is developed with the formation of vesicular structure in the first step and fine control over the entrance size by tuning the temperature in the second step. The silica vesicles have a uniform size of ≈50 nm with excellent cellular uptake performance. When the entrance size is equal to the wall thickness, silica vesicles after hydrophobic modification show the highest loading amount (563 mg/g) towards Ribonuclease A with a sustained release behavior. Consequently, the silica vesicles are excellent nano‐carriers for cellular delivery applications of therapeutical biomolecules.  相似文献   

10.
Ultrasensitive and rapid detection of nano‐objects is crucial in both fundamental studies and practical applications. Optical sensors using evanescent fields in microcavities, plasmonic resonators, and nanofibers allow label‐free detection down to single molecules, but practical applications are severely hindered by long response time and device reproducibility. Here, an on‐chip dense waveguide sensor to monitor single unlabeled nanoparticles in a strong optical evanescent field is demonstrated. The spiral nanowaveguide design enables two orders of magnitude enhancement in sensing area compared to a straight waveguide, significantly improving the particle capture ability and shortening the target analysis time. In addition, the measurement noise is suppressed to a level of 10?4 in the transmitted power, pushing the detection limit of single particles down to the size of 100 nm. The waveguide sensor on the silicon‐on‐isolator platform can be fabricated reproducibly by the conventional semiconductor processing and compatible with surface functionalization chemistries and microfluidics, which could lead to widespread use for sensing in environmental monitoring and human health.  相似文献   

11.
Mesoporous carbon spheres serving as electrode materials for supercapacitors were synthesized by a facile polymerization-induced colloid aggregation method using melamines as a carbon precursor and commercial colloidal silica as a silica source for hard template. After the carbonization of as-formed resins-template composites at 1000 °C and the removal of the silica template by hydrofluoric acid, the resulting mesoporous carbon spheres with a diameter size of ∼5 μm, specific surface area (up to 1280 m2/g) and uniform pore size as large as 30 nm could be obtained. Due to the enriched nitrogen content and the large pore size of the mesoporous carbon spheres affecting the surface wettability, resistance, and ion diffusion process in the pores, the mesoporous carbon spheres showed a high specific capacitance of 196 F/g in 5 mol/l H2SO4 electrolytes at a discharge current density of 1 A/g.  相似文献   

12.
A simple sonochemical approach for the preparation of PbS nanoparticles homogeneously coated on sub-micrometer silica spheres has been described. The transmission electron microscopy and scanning electron microscopy images show that the PbS nanoparticles with size of 30 nm were coated on the silica spheres, without any free nanoparticles. X-ray diffraction reveals that the PbS nanoparticles are of cubic rock-salt structure. Moreover, by dissolving the silica cores with a diluted hydrofluoric acid solution, stable PbS hollow structures were obtained. It is considered that the sonochemical process in which triethanolamine acted as complex agent played an important role for the homogenouse coating of PbS nanoparticles on silica spheres.  相似文献   

13.
PS/silica core/shell composites were synthesized by the modified Stöber method using polystyrene spheres and cetyltrimethylammonium bromide as dual templates under room temperature. The silicate species and the templates were self-assembled to form mesoporous silica shell on the surface of the PS spheres. Hollow silica spheres with mesoporous shell were obtained by removing the polymer core and the templates through calcination. The hollow silica spheres showed high specific surface area of 1099.5 m2/g and narrow pore size distribution centered at 2.31 nm.  相似文献   

14.
Breath figures (BFs) are patterns of liquid droplets that usually form upon condensation on a cold surface. Earlier work has shown that BFs can be used to produce continuous films of porous honeycomb‐structured patterns on various types of materials, paving the path to a number of important applications such as the manufacturing of highly ordered nano‐ and micron‐sized templates, micro lenses, and superhydrophobic coatings. It is worth noting, however, that few new findings have been reported in this area in recent years, limiting pursuits of novel architectures and key applications. In this report, an alternative method is described by which arrays of hollow silica half‐nanospheres can be produced via BF templates. In the present method, a chemical vapor deposition (CVD) protocol performed while the BF is formed on a glass substrate yields a nanostructured pattern of silica half‐spheres, which size (100–700 nm) and density across the glass surface vary with substrate modification and with the relative rates of water condensation and hydrolysis from silica precursors (a process carried out at room temperature). This method of forming arrays of hollow half‐nanospheres via the BF approach may be applicable to various other oxides and a broad range of substrates including large‐area flexible plastics.  相似文献   

15.
Mingwei Zhao  Na Li  Li Yu 《Materials Letters》2008,62(30):4591-4593
Hollow silica spheres have been successfully synthesized by using the ionic liquid microemulsion droplets as the template. The morphology and microstructures of the silica spheres were investigated by scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM), and Nitrogen adsorption-desorption measurements. The obtained images showed that the average size of the silica spheres was almost between 150 and 300 nm. The Nitrogen adsorption-desorption investigation on the silica spheres indicated the amorphous structure on the interface. Both of these two results provide us new insights into this novel template and hollow silica spheres were for the first time prepared free of additional acid and alkali conditions. The possible mechanism for the formation of silica spheres has been put forward and discussed in details.  相似文献   

16.
A new type of hierarchically porous materials is fabricated by assembling mesoporous nanoparticles via spray drying. Well-dispersed mesostructured silica nanoparticles (MSN), whose particle size distribution was narrow in the range of 20 nm and 50 nm, were prepared by a thermal deposition method. By spray drying a MSN suspension, MSN were assembled into spherical secondary particles. After calcination, the spherical particles have two types of mesopores, mesopores of 3 nm in size inside of calcined MSN and larger inter-nanoparticle mesopores of about 15-20 nm. This hierarchical pore system should provide nanospaces for efficient mass transport of guest species with different sizes.  相似文献   

17.
A one-pot strategy was firstly presented in this paper to prepare gelatin-hydroxyapatite (HA) composite microspheres with a core-shell structure in an inverse emulsion. The FT-IR and XRD analysis confirmed the unique formation of HA on the surface of the gelatin microspheres. The deposited HA particles of about 50 nm in size were found to be approximately spherical in morphology and poorly crystallized. When the weight ratio of HA to gelatin was less than 1:4, most of the HA particles were precipitated on the surface of the gelatin spheres to form a homogeneous coating of about 100 nm in thickness. Moreover, the resulting core-shell composite microspheres had a good dispersity and displayed a particle size distribution of 5-40 μm.  相似文献   

18.
Therapeutic vaccines possess particular advantages and show promising potential to combat burdening diseases, such as acquired immunodeficiency syndrome, hepatitis, and even cancers. An efficient therapeutic vaccine would strengthen the immune system and eventually eliminate target cells through cytotoxic T lymphocytes (CTLs). Unfortunately, insufficient efficacy in triggering such an adaptive immune response is a problem that remains unsolved. To achieve efficient cellular immunity, antigen‐presenting cells must capture and further cross‐present disease‐associated antigens to CD8 T cells via major histocompatibility complex I molecules. Here, a biomimetic strategy is developed to fabricate hierarchical ovalbumin@CaCO3 nanoparticles (OVA@NP, ≈500 nm) under the templating effect of antigen OVA. Taking advantage of the unique physicochemical properties of crystalline vaterite, cluster structure, and high loading, OVA@NP can efficiently ferry cargo antigen to dendritic cells and blast lysosomes for antigen escape to the cytoplasm. In addition, the first evidence that the physical stress from generated CO2 induces autophagy through the LC3/Beclin 1 pathways is presented. These outcomes cooperatively promote antigen cross‐presentation, elicit CD8 T cell proliferation, ignite a potent and specific CTL response, and finally achieve prominent tumor therapy effects.  相似文献   

19.
Intracellular delivery of proteins is a promising strategy of intervention in disease, which relies heavily on the development of efficient delivery platforms due to the cell membrane impermeability of native proteins, particularly for negatively charged large proteins. This work reports a vesicle supra‐assembly approach to synthesize novel amine‐functionalized hollow dendritic mesoporous silica nanospheres (A‐HDMSN). An amine silica source is introduced into a water–oil reaction solution prior to the addition of conventional silica source tetraethylorthosilicate. This strategy favors the formation of composite vesicles as the building blocks which further assemble into the final product. The obtained A‐HDMSN have a cavity core of ≈170 nm, large dendritic mesopores of 20.7 nm in the shell and high pore volume of 2.67 cm3 g?1. Compared to the calcined counterpart without amine groups (C‐HDMSN), A‐HDMSN possess enhanced loading capacity to large negative proteins (IgG and β‐galactosidase) and improved cellular uptake performance, contributed by the cationic groups. A‐HDMSN enhance the intracellular uptake of β‐galactosidase by up to 5‐fold and 40‐fold compared to C‐HDMSN and free β‐galactosidase, respectively. The active form of β‐galactosidase delivered by A‐HDMSN retains its intracellular catalytic functions.  相似文献   

20.
A simple, soft nanolithographic method is used to fabricate sub‐10‐nm structures on star polyethylene glycol‐based hydrogels and perfluoropolyether‐based materials. Very small features, for example, gold nanoparticles of size ≈8 nm with an interparticle distance of ≈100 nm, are successfully reproduced from a hard silicon master into both elastomers. Scanning force microscopy is used to investigate the replicas, and the original hexagonal pattern of the nanoparticles is clearly recognized. In addition, both replicas are usable as secondary, soft molds yielding positive copies of the primary, hard master. The results presented here show similar replication capabilities for both elastomers despite the markedly different properties of the precursors. Moreover, the hydrogel material can be easily peeled off from both soft and silicon masters without the need for surface treatment. The procedure allows nanopatterning of a biocompatible material over large areas, which is a useful tool to investigate cellular responses to defined nanotopography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号