首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface‐enhanced Raman scattering (SERS) provides a dramatic increase of Raman intensity for molecules adsorbed on nanogap‐rich metal nanostructures, serving as a promising tool for molecular analysis. However, surface contamination caused by protein adsorption and low surface concentration of small target molecules reduce the sensitivity, which severely restricts the use of SERS in many applications. Here, charged microgels containing agglomerates of gold nanoparticles (Au NPs) are designed using droplet‐based microfluidics to provide a reliable SERS substrate with molecular selectivity and high sensitivity. The limiting mesh size of hydrogel enables the autonomous exclusion of large proteins and the charged matrix concentrates oppositely charged small molecules through electrostatic attraction. As nanogaps among Au NPs in the agglomerates enhance Raman intensity, Raman spectrum of the adsorbed molecules is selectively measured with high sensitivity in the absence of interruption from adhesive proteins. Therefore, the SERS‐active‐charged microgels can be used for direct analysis of pristine biological samples without the pretreatment steps of separation and concentration, which are commonly a prerequisite for Raman analysis. For the purpose of demonstration, a direct detection of fipronil sulfone with partial negative charges, a metabolite of toxic insecticide, dissolved in eggs using the positively charged microgels without any pretreatment of the samples, is shown.  相似文献   

2.
Molecular imaging techniques based on surface‐enhanced Raman scattering (SERS) face a lack of reproducibility and reliability, thus hampering its practical application. Flower‐like gold nanoparticles have strong SERS enhancement performance due to having plenty of hot‐spots on their surfaces, and this enhancement is not dependent on the aggregation of the particles. These features make this kind of particle an ideal SERS substrate to improve the reproducibility in SERS imaging. Here, the SERS properties of individual flower‐like gold nanoparticles are systematically investigated. The measurements reveal that the enhancement of a single gold nanoparticle is independent of the polarization of the excitation laser with an enhancement factor as high as 108. After capping with Raman signal molecules and folic acid, the gold nanoflowers show strong Raman signal in the living cells, excellent targeting properties, and a high signal‐to‐noise ratio for SERS imaging.  相似文献   

3.
Surface‐enhanced Raman scattering (SERS) is a promising technique for molecular analysis as the molecular fingerprints (Raman spectra) are amplified to detectable levels compared with common spectroscopy. Metal nanostructures localize electromagnetic field on their surfaces, which can lead to dramatic increase of Raman intensity of molecules adsorbed. However, the metal surfaces are prone to contamination, thereby requiring pretreatment of samples to remove adhesive molecules. To avoid the pretreatment and potentially achieve point‐of‐care (POC) analysis, we have developed SERS‐active microgels using the droplet‐microfluidic system. As the microgels are composed of water‐swollen network with consistent mesh size, they selectively allow diffusion of molecules smaller than the mesh, thereby excluding large adhesives. To render the microgels highly SERS‐active, we destabilize silver nanocubes to form agglomerates, which are embedded in the matrix of microgels. The nanogaps in the agglomerates provide high sensitivity in Raman measurement and size‐selective permeability of the microgel matrix obviates the pretreatment of samples. To validate the functions, we demonstrate the direct detection of Aspirin dissolved in whole blood without any pretreatment.  相似文献   

4.
Magnetic‐plasmonic nanoparticles have received considerable attention for widespread applications. These nanoparticles (NPs) exhibiting surface‐enhanced Raman scattering (SERS) activities are developed due to their potential in bio‐sensing applicable in non‐destructive and sensitive analysis with target‐specific separation. However, it is challenging to synthesize these NPs that simultaneously exhibit low remanence, maximized magnetic content, plasmonic coverage with abundant hotspots, and structural uniformity. Here, a method that involves the conjugation of a magnetic template with gold seeds via chemical binding and seed‐mediated growth is proposed, with the objective of obtaining plasmonic nanostructures with abundant hotspots on a magnetic template. To obtain a clean surface for directly functionalizing ligands and enhancing the Raman intensity, an additional growth step of gold (Au) and/or silver (Ag) atoms is proposed after modifying the Raman molecules on the as‐prepared magnetic‐plasmonic nanoparticles. Importantly, one‐sided silver growth occurred in an environment where gold facets are blocked by Raman molecules; otherwise, the gold growth is layer‐by‐layer. Moreover, simultaneous reduction by gold and silver ions allowed for the formation of a uniform bimetallic layer. The enhancement factor of the nanoparticles with a bimetallic layer is approximately 107. The SERS probes functionalized cyclic peptides are employed for targeted cancer‐cell imaging and separation.  相似文献   

5.
Near‐field plasmonic coupling and local field enhancement in metal nanoarchitectures, such as arrangements of nanoparticle clusters, have application in many technologies from medical diagnostics, solar cells, to sensors. Although nanoparticle‐based cluster assemblies have exhibited signal enhancements in surface‐enhanced Raman scattering (SERS) sensors, it is challenging to achieve high reproducibility in SERS response using low‐cost fabrication methods. Here an innovative method is developed for fabricating self‐organized clusters of metal nanoparticles on diblock copolymer thin films as SERS‐active structures. Monodisperse, colloidal gold nanoparticles are attached via a crosslinking reaction on self‐organized chemically functionalized poly(methyl methacrylate) domains on polystyrene‐block‐poly(methyl methacrylate) templates. Thereby nanoparticle clusters with sub‐10‐nanometer interparticle spacing are achieved. Varying the molar concentration of functional chemical groups and crosslinking agent during the assembly process is found to affect the agglomeration of Au nanoparticles into clusters. Samples with a high surface coverage of nanoparticle cluster assemblies yield relative enhancement factors on the order of 109 while simultaneously producing uniform signal enhancements in point‐to‐point measurements across each sample. High enhancement factors are associated with the narrow gap between nanoparticles assembled in clusters in full‐wave electromagnetic simulations. Reusability for small‐molecule detection is also demonstrated. Thus it is shown that the combination of high signal enhancement and reproducibility is achievable using a completely non‐lithographic fabrication process, thereby producing SERS substrates having high performance at low cost.  相似文献   

6.
Raman microspectroscopy provides chemo‐selective image contrast, sub‐micrometer resolution, and multiplexing capabilities. However, it suffers from weak signals resulting in image‐acquisition times of up to several hours. Surface‐enhanced Raman scattering (SERS) can dramatically enhance signals of molecules in close vicinity of metallic surfaces and overcome this limitation. Multimodal, SERS‐active nanoparticles are usually labeled with Raman marker molecules, limiting SERS to the coating material. In order to realize multimodal imaging while acquiring the rich endogenous vibronic information of the specimen, a core–shell particle based on “Nanorice”, where a spindle‐shaped iron oxide core is encapsulated by a closed gold shell, is developed. An ultrathin layer of silica prevents agglomeration and unwanted chemical interaction with the specimen. This approach provides Raman signal enhancement due to plasmon resonance effects of the shell while the optical absorption in the near‐infrared spectral region provides contrast in photoacoustic tomography. Finally, T2‐relaxation of a magnetic resonance imaging (MRI) experiment is altered by taking advantage of the iron oxide core. The feasibility for Raman imaging is evaluated by nearfield simulations and experimental studies on the primate cell line COS1. MRI and photoacoustics are demonstrated in agarose phantoms illustrating the promising translational nature of this strategy for clinical applications in radiology.  相似文献   

7.
Plexitonic nanoparticles offer variable optical properties through tunable excitations, in addition to electric field enhancements that far exceed molecular resonators. This study demonstrates a way to design an ultrabright surface‐enhanced Raman spectroscopy (SERS) signal while simultaneously quenching the fluorescence background through silica encapsulation of the semiconductor–metal composite nanoparticles. Using a multistep approach, a J‐aggregate‐forming organic dye is assembled on the surface of gold nanoparticles using a cationic linker. Excitonic resonance of the J‐aggregate–metal system shows an enhanced SERS signal at an appropriate excitation wavelength. Further encapsulation of the decorated particles in silica shows a significant reduction in the fluorescence signal of the Raman spectra (5× reduction) and an increase in Raman scattering (7× enhancement) when compared to phospholipid encapsulation. This reduction in fluorescence is important for maximizing the useful SERS enhancement from the particle, which shows a signal increase on the order of 104 times greater than J‐aggregated dye in solution and 24 times greater than Oxonica S421 SERS tag. The silica layer also serves to promote colloidal stability. The combination of reduced fluorescence background, enhanced SERS intensity, and temporal stability makes these particles highly distinguishable with potential to enable high‐throughput applications such as SERS flow cytometry.  相似文献   

8.
Li M  Zhang J  Suri S  Sooter LJ  Ma D  Wu N 《Analytical chemistry》2012,84(6):2837-2842
A simple, ultrasensitive, highly selective, and reagent-free aptamer-based biosensor has been developed for quantitative detection of adenosine triphosphate (ATP) using surface-enhanced Raman scattering (SERS). The sensor contains a SERS probe made of gold nanostar@Raman label@SiO(2) core-shell nanoparticles in which the Raman label (malachite green isothiocyanate, MGITC) molecules are sandwiched between a gold nanostar core and a thin silica shell. Such a SERS probe brings enhanced signal and low background fluorescence, shows good water-solubility and stability, and exhibits no sign of photobleaching. The aptamer labeled with the SERS probe is designed to hybridize with the cDNA on a gold film to form a rigid duplex DNA. In the presence of ATP, the interaction between ATP and the aptamer results in the dissociation of the duplex DNA structure and thereby removal of the SERS probe from the gold film, reducing the Raman signal. The response of the SERS biosensor varies linearly with the logarithmic ATP concentration up to 2.0 nM with a limit of detection of 12.4 pM. Our work has provided an effective method for detection of small molecules with SERS.  相似文献   

9.
We report on the capabilities of near-infrared surface-enhanced Raman scattering (SERS) using gold nanoparticles to obtain detailed chemical information with high spatial resolution from within single cancer cells, living or fixed. Colloidal gold particles, 60 nm in size, were introduced into live human osteosarcoma cells by endocytosis by adding them to the growth medium. Rapid SERS mapping of cells indicated that not only could rich vibrational spectra be obtained from intrinsic cellular constituents both in the cytoplasm and nucleus and but also the distribution of extrinsic molecules introduced into the cells, in this case, rhodamine 6G could be characterized, suggesting that the intracellular distribution of chemotherapeutic agents could potentially be measured by this technique. We show that the SERS signal intensity from the cellular components increases and more spectral detail is acquired from dried cells when compared with hydrated cells in buffer. The data also show spectral fluctuations, mainly in intensity but also in peak position, which are dependent upon the intensity of the excitation light and are probably due to diffusion of molecules on the surface of the gold nanoparticles. A detailed understanding of the origins of these effects is still not complete, but the ability to acquire very sensitive SERS inside living cancer cells indicates the potential of this technique as a useful tool in biomedicine.  相似文献   

10.
Well defined gold nanostructures of various sizes are fabricated on glass substrates using high-resolution electron-beam lithography/lift-off techniques and detailed surface-enhanced Raman scattering (SERS) properties of crystal violet molecules are studied in order to elucidate electromagnetic (EM) field enhancement effects on the fabricated structures. SERS measurements are performed with high reproducibility using in situ Raman microspectroscopy in aqueous solution. An analysis based on EM theory is performed using field-enhancement factors obtained from finite-difference time-domain (FDTD) simulations and the analysis reproduces experimental results very well. It is noteworthy, furthermore, that the proposed analytic method of EM effects on SERS allows the estimate of the ideal local temperature of gold nanostructures by canceling out the difference in EM field factors at Stokes and anti-Stokes Raman scattering wavelengths. Thus, these experimental results demonstrate that quantitative analysis based on EM theory can be obtained using highly controlled gold nanostructures for SERS measurements with high reproducibility, a result that is promising for the construction of a SERS analysis chip. Although no SERS chip reported so far has been usable for quantitative analysis, this study opens the door for construction of a quantitative SERS chip.  相似文献   

11.
A method is developed to synthesize surface‐enhanced Raman scattering (SERS) materials capable of single‐molecule detection, integrated with a microfluidic system. Using a focused laser, silver nanoparticle aggregates as SERS monitors are fabricated in a microfluidic channel through photochemical reduction. After washing out the monitor, the aggregates are irradiated again by the same laser. This key step leads to full reduction of the residual reactants, which generates numerous small silver nanoparticles on the former nanoaggregates. Consequently, the enhancement ability of the SERS monitor is greatly boosted due to the emergence of new “hot spots.” At the same time, the influence of the notorious “memory effect” in microfluidics is substantially suppressed due to the depletion of surface residues. Taking these advantages, two‐step photoreduced SERS materials are able to detect different types of molecules with the concentration down to 10?13m . Based on a well‐accepted bianalyte approach, it is proved that the detection limit reaches the single‐molecule level. From a practical point of view, the detection reproducibility at different probing concentrations is also investigated. It is found that the effective single‐molecule SERS measurements can be raised up to ≈50%. This microfluidic SERS with high reproducibility and ultrasensitivity will find promising applications in on‐chip single‐molecule spectroscopy.  相似文献   

12.
In this paper, we describe the synthesis and characterization of 2,5-dimercaptobenzoic acid as a novel pH-sensitive disulfide reporter molecule for surface-enhanced Raman scattering (SERS) capable of inducing the controlled aggregation of gold (Au) colloids in solution without the addition of salts. While weak acids have been shown to yield some pH sensitivity as reporter molecules for SERS measurements, the reproducibility and signal strength of nanoparticle probes based on such molecules can vary greatly. This limited reproducibility depends greatly on the salt-induced aggregation of the colloidal nanoprobes, which is required in order to obtain SERS signals strong enough to probe individual clusters. This complicates their use in live cell sensing applications. We show that our approach results in primarily bridged nanoparticles comprising a pH-sensitive nanoprobe that can quantify accurately pH values well below 5.5. The robustness and sensitivity of this system makes it a powerful tool for measuring pH values on the nanoscale under in vitro conditions.  相似文献   

13.
Microgels, microparticles made of hydrogels, show fast diffusion kinetics and high reconfigurability while maintaining the advantages of hydrogels, being useful for various applications. Here, presented is a new microfluidic strategy for producing polymer‐graphene oxide (GO) composite microgels without chemical cues or a temperature swing for gelation. As a main component of microgels, polymers that are able to form hydrogen bonds, such as polyvinyl alcohol (PVA), are used. In the mixture of PVA and GO, GO is tethered by PVA through hydrogen bonding. When the mixture is rapidly concentrated in the core of double‐emulsion drops by osmotic‐pressure‐driven water pumping, PVA‐tethered GO sheets form a nematic phase with a planar alignment. In addition, the GO sheets are linked by additional hydrogen bonds, leading to a sol–gel transition. Therefore, the PVA–GO composite remains undissolved when it is directly exposed to water by oil‐shell rupture. These composite microgels can be also produced using poly(ethylene oxide) or poly(acrylic acid), instead of PVA. In addition, the microgels can be functionalized by incorporating other polymers in the presence of the hydrogel‐forming polymers. It is shown that the multicomponent microgels made from a mixture of polyacrylamide, PVA, and GO show an excellent adsorption capacity for impurities.  相似文献   

14.
Plasmon resonance of gold nanoparticles is responsible of the electromagnetic (EM) Surface Enhanced Raman Scattering (SERS) effect. Interaction of an amorphous matrix with a SERS substrate was studied. Thin films with different thickness of amorphous TiO2 coated on a Klarite® substrate show a 100 times enhancement of the Raman signal. Distance dependence of the SERS interaction was shown to be less than 60 nm.  相似文献   

15.
A reliable method to prepare a surface‐enhanced Raman scattering (SERS) active substrate is developed herein, by electrodeposition of gold nanoparticles (Au NPs) on defect‐engineered, large area chemical vapour deposition graphene (GR). A plasma treatment strategy is used in order to engineer the structural defects on the basal plane of large area single‐layer graphene. This defect‐engineered Au functionalized GR, offers reproducible SERS signals over the large area GR surface. The Raman data, along with X‐ray photoelectron spectroscopy and analysis of the water contact angle are used to rationalize the functionalization of the graphene layer. It is found that Au NPs functionalization of the “defect‐engineered” graphene substrates permits detection of concentrations as low as 10?16 m for the probe molecule Rhodamine B, which offers an outstanding molecular sensing ability. Interestingly, a Raman signal enhancement of up to ≈108 is achieved. Moreover, it is observed that GR effectively quenches the fluorescence background from the Au NPs and molecules due to the strong resonance energy transfer between Au NPs and GR. The results presented offer significant direction for the design and fabrication of ultra‐sensitive SERS platforms, and also open up possibilities for novel applications of defect engineered graphene in biosensors, catalysis, and optoelectronic devices.  相似文献   

16.
An ideal surface-enhanced Raman scattering (SERS) nanostructure for sensing and imaging applications should induce a high signal enhancement, generate a reproducible and uniform response, and should be easy to synthesize. Many SERS-active nanostructures have been investigated, but they suffer from poor reproducibility of the SERS-active sites, and the wide distribution of their enhancement factor values results in an unquantifiable SERS signal. Here, we show that DNA on gold nanoparticles facilitates the formation of well-defined gold nanobridged nanogap particles (Au-NNP) that generate a highly stable and reproducible SERS signal. The uniform and hollow gap (~1 nm) between the gold core and gold shell can be precisely loaded with a quantifiable amount of Raman dyes. SERS signals generated by Au-NNPs showed a linear dependence on probe concentration (R(2) > 0.98) and were sensitive down to 10 fM concentrations. Single-particle nano-Raman mapping analysis revealed that >90% of Au-NNPs had enhancement factors greater than 1.0 × 10(8), which is sufficient for single-molecule detection, and the values were narrowly distributed between 1.0 × 10(8) and 5.0 × 10(9).  相似文献   

17.
Abstract

This work describes novel surface-enhanced Raman scattering (SERS) substrates based on ferroelectric periodically poled LiNbO3 templates. The templates comprise silver nanoparticles (AgNPs), the size and position of which are tailored by ferroelectric lithography. The substrate has uniform and large sampling areas that show SERS effective with excellent signal reproducibility, for which the fabrication protocol is advantageous in its simplicity. We demonstrate ferroelectric-based SERS substrates with particle sizes ranging from 30 to 70 nm and present tunable SERS effect from Raman active 4-mercaptopyridine molecules attached to AgNPs when excited by a laser source at 514 nm.  相似文献   

18.
The assembly of plasmonic metal nanoparticles into hot spot surface‐enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self‐complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split‐green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near‐field dipolar couplings between AuNPs and provides SERS enhancement factors above 108. Among the different nanoclusters studied, AuNP/GFP chains allow near‐infrared SERS detection of the GFP chromophore imidazolinone/exocyclic C?C vibrational mode with theoretical enhancement factors of 108–109. For larger AuNP/GFP assemblies, the presence of non‐GFP seeded nanogaps between tightly packed nanoparticles reduces near‐field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles.  相似文献   

19.
The design and synthesis of plasmonic nanoparticles with Raman-active molecules embedded inside them are of significant interest for sensing and imaging applications.However,direct synthesis of such nanostructures with controllable shape,size,and plasmonic properties remains extremely challenging.Here we report on the preparation of uniform Au@Ag core/shell nanorods with controllable Ag shells of 1 to 25 nm in thickness.1,4-Aminothiophenol (4-ATP) molecules,used as the Raman reporters,were located between the Au core and the Ag shell.Successful embedding of reporter molecules inside the core/shell nanoparticles was confirmed by the absence of selective oxidation of the amino groups,as measured by Raman spectroscopy.The dependence of Raman intensity on the location of the reporter molecules in the inside and outside of the nanorods was studied.The molecules in the interior showed strong and uniform Raman intensity,at least an order of magnitude higher than that of the molecules on the nanoparticle surface.In contrast to the usual surface-functionalized Raman tags,aggregation and clustering of nanoparticles with embedded molecules decreased the surface-enhanced Raman scattering (SERS) signal.The findings from this study provide the basis for a novel detection technique of low analyte concentration utilizing the high SERS response of molecules inside the core/shell metal nanostructures.As an example,we show robust SERS detection of thiram fungicide as low as 10-9 M in solutions.  相似文献   

20.
Raman spectroscopy has been identified as a potentially useful tool to collect evidence of past or present life on extraterrestrial bodies. However, it is limited by its inherently low signal strength. In this investigation, laboratory tests were conducted using surface-enhanced Raman spectroscopy (SERS) in an "inverted" mode to detect the presence of organic compounds that may be similar to possible biomarkers present on Mars. SERS was used to overcome the inherently low signal intensity of Raman spectroscopy and was an effective method for detecting small concentrations of organic compounds on a number of surfaces. For small organic molecules, dissolution of the molecule to be analyzed in a suitable solvent and depositing it on a prepared SERS substrate for analysis is possible. However, for larger molecules, an "inverted" SERS (iSERS) technique was shown to be effective. In iSERS, nanoparticles of silver or gold were deposited on the mineral substrate/organic compound to be analyzed. Benzotriazole, benzoic acid, and phthalic acid were used as test organic analogs and the iSERS technique was able to detect femtomole levels of the analytes. The interference from various mineral substrates was also examined. Different methods of depositing silver particles were evaluated, including ion beam-assisted vapor deposition and deposition from aqueous colloidal suspensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号