首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李志英  高飞跃  杨丹 《包装工程》2015,36(1):70-73,93
目的依据包装缓冲设计及动力学理论分析新型环保纸蜂窝夹芯板的最佳厚度。方法通过平压实验、弯曲实验、抗冲击实验和单点吊挂实验分析蜂窝纸板的各项力学性能。结果平压实验时,压溃过程呈先后顺序,其压力-位移曲线呈双峰形态。在复合材料中间部位施加压力时,压力可达板自重的0.75倍以上,70~110 mm厚的板均能承受30 kg的大软体冲击(冲击高度为500 mm),满足墙体抗冲击性能标准;厚度小于90 mm的墙板,其损坏情况为孔洞周围石膏板被压溃,表现为轻微损伤;厚度大于90 mm的墙板,其力学性能良好。结论墙板的最佳厚度为90 mm。  相似文献   

2.
The present study investigates torsional and compressive loading of a paperboard package. Finite element (FE) analyses simulating the tests were performed to improve understanding of the stresses and deformations in the paperboard during loading. A simple experimental characterization of the necessary material properties could be performed to represent the multi-ply paperboard as a single-ply structure. The results from the single-ply model were compared with a laminate model, and the differences between the models were small. Comparing experimental and FE simulations of box compression and torsion showed that the FE models could accurately predict the response curves. However, in the simulations, there was an overprediction of the maximum compressive force and maximum torque, which was expected since geometrical imperfections and the heterogeneous internal structure of the material were not accounted for in the material model or the FE model. Local yield lines formed at the onset of non-linearities in the package load–displacement curves. Therefore, the strength of the paperboard affects the maximum compressive strength and maximum torque, and the bending stiffness of the paperboard only had a minor effect. When a first local maximum was reached, the number of FE that reached the failure stress increased exponentially. The simulations also showed that box compression was not an effect of package height, but higher packages had a lower maximum torque.  相似文献   

3.
To allow for large‐scale forming applications, such as converting paperboard into package containers, efficient and reliable numerical tools are needed. In finite element simulations of thin structures, elements including structural features are required to reduce the computational cost. Solid‐shell elements based on reduced integration with hourglass stabilization is an attractive choice. One advantage of this choice is the natural inclusion of the thickness, not present in standard degenerated shells, which is especially important for many problems involving contact. Furthermore, no restrictions are imposed on the constitutive models since the solid‐shell element does not require the plane stress condition to be enforced. In this work, a recently proposed efficient solid‐shell element is implemented together with a state‐of‐the‐art continuum model for paperboard. This approach is validated by comparing the obtained numerical results with experimental results for paperboard as well as with those found by using 3D continuum elements. To show the potential of this approach, a large‐scale forming simulation of paperboard is used as a proof of concept.  相似文献   

4.
This paper describes the results of a combined experimental/numerical study to investigate the perforation resistance of sandwich structures. The impact response of plain foam samples and their associated sandwich panels was characterised by determining the energy required to perforate the panels. The dynamic response of the panels was predicted using the finite element analysis package ABAQUS/Explicit. The experimental arrangement, as well as the FE model were also used to investigate, for the first time, the effect of oblique loading on sandwich structures and also to study the impact response of sandwich panels on an aqueous support.  相似文献   

5.
The aim of this study was to analyse the mechanical behaviour of paperboard packages subjected to static compressive loads. The study was divided in three parts and experiments and finite element analysis conducted for each part. First, a panel of paperboard was subjected to edge compressive loading as a means of checking the material model. Second, the package was cut into segments and each segment was subjected to compression in order to determine the contribution of the different parts to the overall behaviour of the package. Third, a whole package loaded in compression was studied. In the finite element simulations, the paperboard was modelled as an orthotropic, linear, elastic–plastic laminate. The study utilized a non‐linear finite element analysis, based on the plasticity of the material and large displacements. The results show that the middle segment of the package exhibits a higher stiffness than that of the upper and lower package segments and that of the whole package, which leads to the conclusion that the low initial stiffness of the package is a consequence of the low stiffness of the upper and lower corners, i.e. of the horizontal creases. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
目的提高打印机包装的缓冲性能,避免打印机在流通过程中可能造成的外观性功能性损坏,从而造成不必要的损失。方法通过缓冲材料动态压缩实验,分析对比EPE和EPS的缓冲性能,从而设计缓冲结构,使整体包装包装具有优良的容装性、保护性和方便性。对包装件进行包装测试。结果经过分析对比厚度相同的EPE和EPS可知,EPE吸收的能量更多,缓冲性能更强。A瓦相较于B,E瓦的边压强度更高、缓冲强度更好。结论选择EPE作为缓冲材料,A型瓦楞纸板作为外包装材料设计打印机的整体运输包装。经震动测试加速度在许用范围之内时装载物并未受到损坏,跌落测试下包装件未受到严重损坏,因此打印机整体运输包装具有可行性。  相似文献   

7.
The final aim of this study is to evaluate the influence of impact damage on the residual strength of carbon/epoxy vessels stressed by internal pressure. An intermediate stage determined the residual behaviour of pre-impacted curved panels loaded in tension. Curved panels were impacted, reproducing the damage types observed in impacted vessels filled with propellant. Delamination damage was assessed by ultrasonics and optical microscopy used to observe intra-laminar mechanisms. Tension after impact (TAI) tests quantified the residual behaviour. An experimental design was used as an alternative to the complex analytical modelling of dynamic damage mechanisms. With this original technique, empirical relationships were established, linking impact parameters to residual properties. The force to failure was found to vary in a bi-linear manner with impact energy. Below a specific level of impact energy corresponding to failure in 4/7 of the plies, there is no significant reduction in the residual strength. The composite Young's modulus decreased linearly with impact energy.  相似文献   

8.
Impact behavior and energy absorption of paper honeycomb sandwich panels   总被引:11,自引:0,他引:11  
Dynamic cushioning tests were conducted by free drop and shock absorption principle. The effect of paper honeycomb structure factors on the impact behavior was analyzed. Results of many experiments show that the dynamic impact curve of paper honeycomb sandwich panel is concave and upward; the thickness and length of honeycomb cell-wall have a great effect on its cushioning properties; increasing the relative density of paper honeycomb can improve the energy absorption ability of the sandwich panels; the thickness of paper honeycomb core has an up and down fluctuant effect on the cushioning properties; with the increase of the thickness of paper honeycomb core, the effect dies down; flexible corrugated paperboard as liners can improve the compression resistance and cushioning properties of paper honeycombs. The research results can be used to optimize the structure design of paper honeycomb sandwich panel and material selection for packaging design.  相似文献   

9.
Packaging products in logistics typically will receive multiple low‐intensity repeated impacts, fewer moderate to high‐intensity impacts and vibration. As a result of low‐intensity repeated impacts, local buckling and fold will be formed in honeycomb paperboard, and its cushioning performance will be weakened. This paper investigates the influence of low‐intensity repeated impacts on the cushioning performance of honeycomb paperboard. The low‐intensity repeated impacts with dropping height 5 cm were conducted at first. Then, the moderate‐intensity impact with dropping height 80 cm and vibration experiment were, respectively, conducted. The results show: (a) honeycomb paperboard absorbs the energy produced by low‐intensity repeated impacts through layer upon layer folding of honeycomb structure. The highest buckling peak turns up in low‐intensity impact, followed by a series of buckling in intact honeycomb paperboard. However, the buckling is not obvious in repeated impacts; (b) the load carrying capacity of honeycomb paperboard after low‐intensity repeated impacts declines significantly. Three deformation stages are observed in the load–displacement curve. Most of impact energy is absorbed in the plateau stage. The absorbed energy of damaged honeycomb paperboard under moderate‐intensity impact decreases with the increasing of low‐intensity impact repetitions; and (c) the low‐intensity repeated impacts have an obvious influence on the resonance frequency of packaging product and stiffness of honeycomb paperboard. To confirm vibration properties of product using honeycomb paperboard cushioning, it should be considered in a designing process that honeycomb paperboard changes soften more in logistics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A material model for hybrid-fibre engineered cementitious composites (ECC) under impact loading is developed and calibrated in this paper, and size effect, appropriate erosion criteria and strain rate effect are investigated and accounted for in the model. Employing the new material model, a numerical model and modelling technique are developed to model the impact behaviour and impact process of hybrid-fibre ECC panels using LS-DYNA commercial software. The material model and the numerical model developed in this paper are validated against the experimental results.  相似文献   

11.
The objective of this research was to determine the relationship between different product types and tag orientations on the readability of RFID tags on shipping containers in a palletload that is driven through a portal type reader. This research finds that the content of packages can dramatically reduce the read rate. Only 25% of the tags on shipping containers containing water‐filled bottles could be read. Rice‐filled jars had a higher read rate (80.6%). Even empty boxes did not have a 100% read rate. For the variables without appreciable package contents, only 74–79% of loads had all of their tags read. The orientation of the tag does make a difference, especially when coupled with a filled package between it and the reader antennae. Tags facing outwards, towards the reader antennae, had the highest likelihood of a successful read. When tags for the boxes of water‐filled bottles were all facing downwards, no tags were read. Supply chain managers need to understand these limitations of the technology and find ways to overcome them before RFID can be successfully implemented in supply chains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Cost and recyclability are among the primary factors on exploiting the engineering materials for their new applications. In this context, glass/pp-based sandwich panel has been studied experimentally and numerically with the aims of its potential applications in the automotive structures. The first part of this work presents the experimental results achieved for the load-carrying capacity of panels using three-point bend tests for its static flexural behaviour. Static behaviour is studied to compare the top-roller diameter effect on the flexural behaviour of the panels and shows a significant difference in the results. Impact behaviour of the panels is explored using three different types of impactor end-shapes that generate different levels of damage in the material with the same level of impact energy. The second part of this paper deals with the development of numerical models for the three-point bend and impact behaviour of the panels using a commercial finite element code of Abaqus. Strain energy-based homogenisation technique is employed to determine the equivalent orthotropic properties of complex circular honeycomb core material. The finite element models predict to a good level of the static and impact behaviour of the material when compared with the experiments.  相似文献   

13.
目的通过冲弯实验,测定泡沫铜-聚氨酯复合材料结构在动载荷作用下的缓冲吸能性能,对比研究该复合材料结构抗高冲击、高过载的性能差异。方法向泡沫铜试件中填充不同体积分数的聚氨酯,按照《金属常温冲击韧性实验法》在夏比冲击试验机上进行冲弯试验,测定试样的吸收功值,从而对比探究该种复合材料的力学性能。结果聚氨酯在试样中所占体积分数为50%时其能量均值相对最大,此时材料韧性较好,且材料抵抗冲击载荷能力较强。结论将聚氨酯填充到开孔泡沫铜材料中可构成一种性能优良的抗冲击吸能结构,其性能优于泡沫铜和聚氨酯单体,在抗高冲击、高过载的军工产业和民用产业中具有广阔的应用前景。  相似文献   

14.
This paper presents a detailed experimental and numerical investigation on the structural behavior of stiffened composite panels subjected to in-plane shear loads. The experimental work includes the development of a test device for post-buckling analyses of laminated panels subjected to shear loads. The panels out-of-plane displacement field in the post-buckling regime was experimentally characterized using a non-contact 3-D optical device. A test procedure was proposed to obtain reliable and reproducible results. The following parameters were established: geometry and instrumentation of the specimens, test mechanisms, data acquisition procedures and analysis procedures for test data.  相似文献   

15.
李光  李津乐 《包装工程》2018,39(13):52-56
目的对立式瓦楞复合纸板的静态压缩过程进行试验研究和有限元分析,研究不同楞型立式瓦楞复合纸板的力学性能。方法制作A楞、AB楞、B楞等3种不同立式瓦楞复合纸板试样,进行静态压缩实验,得到其压缩应力-应变曲线;建立3种楞型的立式瓦楞复合纸板有限元模型,进行静力学分析,得到其压缩应力-应变曲线,并与实验结果进行对比分析。结果试验和有限元分析均显示立式瓦楞复合纸板的静态压缩过程与蜂窝纸板的静态压缩过程类似,包括弹性阶段、屈服阶段、平台阶段、密实化阶段,试验和有限元分析所得到的压缩应力-应变曲线相吻合。纸板的峰值应力和平台应力与楞型有关,且随着楞高的增大而减小。结论通过试验研究和有限元分析方法得到了不同楞型立式瓦楞复合纸板的静态压缩性能,对该新型材料的应用有重要参考价值。  相似文献   

16.
This paper presents an investigation on the impact fatigue characteristics of valve leaves that are prevalently used in hermetic reciprocating compressors especially for the household type refrigerators. A unique automated impact fatigue test system has been designed and produced, which enables to carry out impact fatigue tests of the compressor valve leaves under the desired impact velocities. The test system incorporates a noncontact actuation, a data acquisition system and an acoustic‐based damage detection technique, which continuously monitors the health of the structure. The damage detection system allows parametrical investigation on the impact fatigue life by detecting any possible damage and automatically terminating the test. The investigation relates the impact fatigue lifetime of the valve leaves with the impact velocity, asymmetrical impact, operation temperature, material type (carbon strip steel, stainless strip steel and new stainless strip steel grade) and tumbling operation duration. The observations show that the cracks have initiated from the edges of the valve leaf where is in contact with the valve plate. Subsequently, the cracks initially have propagated in the radial direction inwards the center of the impact area. Various failure cases have been resulted in by either a single crack or inter‐related multiple cracks. Microscopic and metallographic observations have been performed on the specimens to enhance the understanding of the damage mechanisms. The investigation and introduced test system guide the design optimization of the valve leaves in terms of compressor performance due to the energy consumption and lifetime of the valve leaf.  相似文献   

17.
考虑蜂窝纸板箱缓冲作用的产品包装系统跌落冲击研究*   总被引:21,自引:0,他引:21  
在实际缓冲包装设计中,忽略了外包装箱的缓冲作用,因此很难得到合理的缓冲结构。为了研究外包装箱对缓冲包装系统的影响,首先基于压缩试验分别确立了制作外包装箱的蜂窝纸板与缓冲材料发泡聚乙烯的本构关系;其次建立了发泡聚乙烯与蜂窝纸板的串联力学模型,并介绍了求解算法;最后基于物品响应加速度小于许用值及材料用量最小化两个原则,设计了串联缓冲包装结构目标优化函数并介绍了优化函数的求解步骤,通过试验数据验证了模型的正确性。结果表明,如果不考虑蜂窝纸板箱的缓冲作用,会造成很大程度的保守包装,因此考虑外包装箱的缓冲作用能有效避免缓冲材料的过度使用。这些研究结果与方法为其他不同缓冲材料的串联提供了参考。  相似文献   

18.
蜂窝纸板异面动态冲击性能的实验分析   总被引:2,自引:2,他引:0  
张静静  陈满儒  孙德强 《包装工程》2017,38(23):106-110
目的以六边形蜂窝纸板为研究对象,研究厚度对其异面冲击性能的影响。方法通过动态冲击实验来分析接触力、最大接触力、最大位移、最大应变、吸收能与单位厚度冲击能之间的关系,研究厚度为30,40,50和60 mm等4种蜂窝纸板的异面冲击力学性能。结果当冲击能一定时,随着蜂窝纸板厚度的增加,接触力逐渐减小,接触时间逐渐变长;当单位厚度冲击能一定时,厚度与最大位移和吸收能成正比例关系,厚度与接触力、最大接触力、最大应变成反比例关系;对于任一厚度的蜂窝纸板,最大接触力、最大位移、最大应变、吸收能随单位厚度冲击能的增加而增加,且与其呈线性关系。结论当冲击能相同时,不同厚度蜂窝纸板的吸收能几乎相同,可知蜂窝纸板吸收能量的能力与蜂窝纸板的厚度无关,取决于冲击能量的大小。  相似文献   

19.
This study evaluated some of the important properties of the cardboard substrate panels overlaid with beech veneer. The experimental cardboards from recycled food and beverage carton containers having approximately 75% paperboard, 20% low density polyethylene (LDPE), and 5% aluminum foil were overlaid using four types of adhesives; polyurethane, phenol–formaldehyde, urea–formaldehyde, and melamine–urea formaldehyde. The cardboard specimens overlaid with veneer using polyurethane adhesive had better mechanical properties and water resistance than those of the specimens made with other three types of adhesives. Based on the findings of this study, composite cardboards overlaid with veneers could be considered as an alternative raw material with accepted properties to be used in furniture applications such as counter tops, flooring, and kitchen cabinets.  相似文献   

20.
The present paper presents an experimental and numerical study concerning the deformation and failure behavior in the Taylor impact test. Projectiles manufactured from a commercial high strength and super-hard aluminum alloy 7A04-T6 with a nominal diameter of 12.6 mm and a length of 50.8 mm were fired against a hardened tool steel plate by a one- and two-stage compressed gas gun within the velocity range of 175–370 m/s. Three different deformation and failure modes were observed from the test: mushrooming, shear cracking and fragmentation. Individual velocity ranges and the transitions between the deformation/failure modes are identified by both experiments and numerical simulations. Slightly modified Johnson–Cook models of strength and accumulative damage failure are employed in 3D numerical simulations to describe material behavior of the striking cylinders. Good agreement between the numerical simulations and the experimental results was found. Detailed computational results of each scenario are offered to understand the deformation and failure mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号