首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Control charts are widely used for process monitoring. They show whether the variation is due to common causes or whether some of the variation is due to special causes. To detect large shifts in the process, Shewhart‐type control charts are preferred. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are generally used to detect small and moderate shifts. Shewhart‐type control charts (without additional tests) use only current information to detect special causes, whereas CUSUM and EWMA control charts also use past information. In this article, we proposed a control chart called progressive mean (PM) control chart, in which a PM is used as a plotting statistic. The proposed chart is designed such that it uses not only the current information but also the past information. Therefore, the proposed chart is a natural competitor for the classical CUSUM, the classical EWMA and some recent modifications of these two charts. The conclusion of this article is that the performance of the proposed PM chart is superior to the compared ones for small and moderate shifts, and its performance for large shifts is better (in terms of the average run length). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In the literature, median control charts have been introduced under the assumption of no measurement error. However, measurement errors always exist in practice and may considerably affect the ability of control charts to detect out‐of‐control situations. In this paper, we investigate the performance of Shewhart median chart by using a linear covariate error model. Several figures and tables are presented and commented to show the statistical performance of Shewhart median control chart in the presence of measurement errors. We also investigate the positive effect of taking multiple measurements for each item in a subgroup on the performance of Shewhart median chart. An example illustrates the use of Shewhart median chart in the presence of measurement errors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The coefficient of variation (CV) is used in process monitoring when the process mean and standard deviation are proportional to each other. In this work, a side-sensitive modified group runs CV (SSMGR CV) chart is proposed for monitoring the process CV. The run length performance of the SSMGR CV chart is compared to those of the existing CV charts in terms of the average and standard deviation of the run length criteria. The SSMGR CV chart is found to outperform the existing CV charts. In addition, the run length performance of the SSMGR CV chart is also evaluated in the presence of measurement errors, as these errors are not only unavoidable in practice but they also affect the sensitivity of a control chart in detecting an out-of-control situation. The results obtained show that the accuracy and precision errors affect the performance of the SSMGR CV chart in detecting an out-of-control situation.  相似文献   

5.
In some statistical process control (SPC) applications, quality of a process or product is characterized by contingency table. Contingency tables describe the relation between two or more categorical quality characteristics. In this paper, two new control charts based on the WALD and Stuart score test statistics are designed for monitoring of contingency table‐based processes in Phase‐II. The performances of the proposed control charts are compared with the generalized linear test (GLT) control chart proposed in the literature. The results show the better performance of the proposed control charts under small and moderate shifts. Moreover, new schemes are proposed to diagnose which cell corresponding to different levels of categorical variables is responsible for out‐of‐control signal. In addition, we propose EWMA–WALD and EWMA–Stuart score test control charts to improve the performance of Shewhart‐based control charts in detecting small and moderate shifts in contingency table parameters. Meanwhile, we compare the performances of two proposed EWMA‐based control charts with the ones of three existing control charts called EWMA–GLT, EWMA–GLRT and an EWMA‐type control chart for multivariate binomial/multinomial processes along with the ones of the corresponding Shewhart‐based control charts. A numerical example is given to show the efficiency of the proposed methods. Finally, the effect of parameter estimation in Phase I based on m historical contingency table on the performance of the Shewhart‐based control charts is studied. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
《技术计量学》2013,55(4):550-567
An exponentially weighted moving average (EWMA) control chart for monitoring the process mean μ may be slow to detect large shifts in μ when the EWMA tuning parameter λ is small. An additional problem, sometimes called the inertia problem, is that the EWMA statistic may be in a disadvantageous position on the wrong side of the target when a shift in μ occurs, which may significantly delay detection of a shift in μ. Options for improving the performance of the EWMA chart include using the EWMA chart in combination with a Shewhart chart or in combination with an EWMA chart based on squared deviations from target. The EWMA chart based on squared deviations from target is designed to detect increases in the process standard deviation σ, but it is also very effective for detecting large shifts inμ. Capizzi and Masarotto recently proposed the option of an adaptive EWMA control chart in which λ is a function of the data. With the adaptive feature, the EWMA chart behaves like a standard EWMA chart when the current observation is close to the previous EWMA statistic, and like a Shewhart chart otherwise. Here we extend the use of the adaptive feature to EWMA charts based on squared deviations from target, and also consider an alternate way of defining the adaptive feature. We discuss performance measures that we believe are appropriate for assessing the effects of inertia, and compare the performance of various charts and combinations of charts. Standard practice is to simultaneously monitor both μ and σ, so we consider control chart performance when the objective is to detect small or large changes in μ or increases in σ. We find that combinations of EWMA control charts that include a chart based on squared deviations from target give good overall performance whether or not these charts have the adaptive feature.  相似文献   

7.
We investigate in this paper a new type of control chart called VSI EWMA‐RZ by integrating the variable sampling interval feature (VSI) with the exponentially weighted moving average (EWMA) scheme to monitor the ratio of two normal random variables. Because the distribution of the ratio is skewed, we suggest designing two separated one‐sided charts instead of one two‐sided chart. A new coefficient is introduced allowing us to be free to choose a sampling interval provided that it optimizes the performance of the control chart. We also make a direct comparison between the VSI EWMA‐RZ charts and standard EWMA‐RZ control charts. The numerical simulations show that the proposed charts outperform the standard EWMA charts in detecting process shifts. An application is illustrated for the implementation of the VSI EWMA‐RZ control charts in the food industry.  相似文献   

8.
The reflected power function distribution (RPFD) has applications in the fields of reliability engineering and survival analysis. To identify and remove the variation in different reliability processes and also to monitor the reliability of machines where the number of errors follows RPFD, we develop control charts to keep the process in control. A memory less control chart like a Shewhart control chart, and two memory-based control charts like an exponentially weighted moving average (EWMA) control chart and a hybrid exponentially weighted moving average (HEWMA) control chart are discussed and compared with each other. Proposal of these control charts is based on two different estimators, the percentile estimator (PE) and the modified maximum likelihood estimator (MMLE). This study shows that an HEWMA control chart based on PE performs better than PE-based Shewhart and EWMA control charts, as well as MMLE-based Shewhart, EWMA, and HEWMA control charts.  相似文献   

9.
This article is the first of its kind which proposes a Variable Parameters (VP) chart to monitor the coefficient of variation (CV). Formulae for various performance measures and the algorithms to optimize these performance measures are proposed. The VP CV chart consistently outperforms the five alternative CV charts in the literature, for all shift sizes. Compared to the Exponentially Weighted Moving Average (EWMA) CV2 chart, the VP CV chart outperforms it for moderate and large shift sizes, while for small shift sizes, the EWMA CV2 chart outperforms the VP CV chart. Subsequently, the VP CV chart is implemented on an industrial example.  相似文献   

10.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as a potentially powerful process monitoring tool of the statistical process control because of their excellent speed in detecting small to moderate shifts in the process parameters. Recently, new EWMA and synthetic control charts have been proposed based on the best linear unbiased estimator of the scale parameter using ordered ranked set sampling (ORSS) scheme, named EWMA‐ORSS and synthetic‐ORSS charts, respectively. In this paper, we extend the work and propose a new synthetic EWMA (SynEWMA) control chart for monitoring the process dispersion using ORSS, named SynEWMA‐ORSS chart. The SynEWMA‐ORSS chart is an integration of the EWMA‐ORSS chart and the conforming run length chart. Extensive Monte Carlo simulations are used to estimate the run length performances of the proposed control chart. A comprehensive comparison of the run length performances of the proposed and the existing powerful control charts reveals that the SynEWMA‐ORSS chart outperforms the synthetic‐R, synthetic‐S, synthetic‐D, synthetic‐ORSS, CUSUM‐R, CUSUM‐S, CUSUM‐ln S2, EWMA‐ln S2 and EWMA‐ORSS charts when detecting small shifts in the process dispersion. A similar trend is observed when the proposed control chart is constructed under imperfect rankings. An application to a real data is also provided to demonstrate the implementation and application of the proposed control chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Profile monitoring is a technique to test the stability of the relationship between a response variable and explanatory variables over time. The most relevant linear profile monitoring methods have been constructed using the normality assumption. However, the normality assumption could be violated in many quality control applications. In this study, we consider a situation in which the random errors in a linear profile model follow a skew‐normal distribution. The skew‐normal distribution is a generalized version of the normal distribution. A new Shewhart‐type chart and exponentially weighted moving average (EWMA) chart, named the ShewhartR and EWMAR charts, respectively, are constructed based on residuals to monitor the parameters of linear profile model. The simulation results show that the multivariate EWMA chart is sensitive to the normality assumption and that the proposed ShewhartR and EWMAR charts have good ability to detect big and small‐to‐moderate process shifts, respectively. An example using photo mask techniques in semiconductor manufacturing is provided to illustrate the applications of the ShewhartR and EWMAR charts.  相似文献   

12.
The exponentially weighted moving average (EWMA), cumulative sum (CUSUM), and adaptive EWMA (AEWMA) control charts have had wide popularity because of their excellent speed in tracking infrequent process shifts, which are expected to lie within certain ranges. In this paper, we propose a new AEWMA dispersion chart that may achieve better performance over a range of dispersion shifts. The idea is to first consider an unbiased estimator of the dispersion shift using the EWMA statistic, and then based on the magnitude of this shift, select an appropriate value of the smoothing parameter to design an EWMA chart, named the AEWMA chart. The run length characteristics of the AEWMA chart are computed with the help of extensive Monte Carlo simulations. The AEWMA chart is compared with some of the existing powerful competitor control charts. It turns out that the AEWMA chart performs substantially and uniformly better than the EWMA‐S2, CUSUM‐S2, existing AEWMA, and HHW‐EWMA charts when detecting different kinds of shifts in the process dispersion. Moreover, an example is also used to explain the working and implementation of the proposed AEWMA chart.  相似文献   

13.
Exponentially weighted moving average (EWMA) control charts have been widely accepted because of their excellent performance in detecting small to moderate shifts in the process parameters. In this paper, we propose new EWMA control charts for monitoring the process mean and the process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named EWMA‐ODRSS and EWMA‐OIDRSS charts, respectively. We use Monte Carlo simulations to estimate the average run length, median run length, and standard deviation of run length of the proposed EWMA charts. We compare the performances of the proposed EWMA charts with the existing EWMA charts when detecting shifts in the process mean and in the process variability. It turns out that the EWMA‐ODRSS mean chart performs uniformly better than the classical EWMA, fast initial response‐based EWMA, Shewhart‐EWMA, and hybrid EWMA mean charts. The EWMA‐ODRSS mean chart also outperforms the Shewhart‐EWMA mean charts based on ranked set sampling (RSS) and median RSS schemes and the EWMA mean chart based on ordered RSS scheme. Moreover, the graphical comparisons of the EWMA dispersion charts reveal that the proposed EWMA‐ODRSS and EWMA‐OIDRSS charts are more sensitive than their counterparts. We also provide illuminating examples to illustrate the implementation of the proposed EWMA mean and dispersion charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Statistical process control deals with monitoring process to detect disturbances in the process. These disturbances may be from the process mean or variance. In this study, we propose some charts that are efficient for detecting early shifts in dispersion parameter, by applying the Fast Initial Response feature. Performance measures such as average run length, standard deviation of the run length, extra quadratic loss, relative average run length, and performance comparison index are used to compare the proposed charts with their existing counterparts, including the Shewhart R chart and the Shewhart S chart with and without warning lines. Others include the CUSUM R chart, the CUSUM S chart, the EWMA of ln S2, the CUSUM of ln S2, the Pσ CUSUM, the χ CUSUM, and the Change Point (CP) CUSUM charts. The proposed charts do not only detect early shifts in the process dispersion faster, but also have better overall performance than their existing counterparts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) charts are famous statistical tools, to handle special causes and to bring the process back in statistical control. Shewhart charts are useful to detect large shifts, whereas EWMA and CUSUM are more sensitive for small to moderate shifts. In this study, we propose a new control chart, named mixed CUSUM‐EWMA chart, which is used to monitor the location of a process. The performance of the proposed mixed CUSUM‐EWMA control chart is measured through the average run length, extra quadratic loss, relative average run length, and a performance comparison index study. Comparisons are made with some existing charts from the literature. An example with real data is also given for practical considerations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Exponentially weighted moving average (EWMA) control charts are mostly used to monitor the manufacturing processes. In this paper, we propose some improved EWMA control charts for detecting the random shifts in the process mean and process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling (OIRSS), named EWMA‐ORSS and EWMA‐OIRSS charts, respectively. Monte Carlo simulations are used to estimate the average run length, median run length and standard deviation of run length of the proposed EWMA control charts. It is observed that the EWMA‐ORSS mean control chart is able to detect the random shifts in the process mean substantially quicker than the Shewhart‐cumulative sum and the Shewhart‐EWMA control charts based on the RSS scheme. Both EWMA‐ORSS and EWMA‐OIRSS location charts perform better than the classical EWMA, hybrid EWMA, Shewhart‐EWMA and fast initial response‐EWMA charts. The EWMA‐ORSS dispersion control chart performs better than the simple random sampling based CS‐EWMA and other EWMA control charts in efficient detection of the random shifts that occur in the process variability. An application to real data is also given to explain the implementation of the proposed EWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) charts are popular statistical tools to improve the performance of the Shewhart chart in detecting small process shifts. In this study, we propose the mixed generally weighted moving average (GWMA)‐CUSUM chart and its reverse‐order CUSUM‐GWMA chart to enhance detection ability compared with existing counterparts. The simulation revealed that the mixed GWMA‐CUSUM and mixed CUSUM‐GWMA charts have the sensitivity to detect small process shifts and efficient structures compared with the mixed EWMA‐CUSUM and mixed CUSUM‐EWMA charts, respectively. Moreover, the mixed GWMA‐CUSUM chart with a large design parameter has robust performance, regardless of the high tail t distribution or right skewness gamma distribution.  相似文献   

18.
In this paper, we provide an overview of a class of control charts called the synthetic charts. Synthetic charts are a combination of a traditional chart (such as a Shewhart, CUSUM, or EWMA chart) and a conforming run‐length (CRL) chart. These charts have been considered in order to maintain the simplicity and improve the performance of small and medium‐sized shift detection of the traditional Shewhart charts. We distinguish between different types of synthetic‐type charts currently available in the literature and highlight how each is designed and implemented in practice. More than 100 publications on univariate and multivariate synthetic‐type charts are reviewed here. We end with some concluding remarks and a list of some future research ideas.  相似文献   

19.
A control chart is a graphical tool used for monitoring a production process and quality improvement. One such charting procedure is the Shewhart‐type control chart, which is sensitive mainly to the large shifts. For small shifts, the cumulative sum (CUSUM) control charts and exponentially weighted moving average (EWMA) control charts were proposed. To further enhance the ability of the EWMA control chart to quickly detect wide range process changes, we have developed an EWMA control chart using the median ranked set sampling (RSS), median double RSS and the double median RSS. The findings show that the proposed median‐ranked sampling procedures substantially increase the sensitivities of EWMA control charts. The newly developed control charts dominate most of their existing counterparts, in terms of the run‐length properties, the Average Extra Quadratic Loss and the Performance Comparison Index. These include the classical EWMA, fast initial response EWMA, double and triple EWMA, runs‐rules EWMA, the max EWMA with mean‐squared deviation, the mixed EWMA‐CUSUM, the hybrid EWMA and the combined Shewhart–EWMA based on ranks. An application of the proposed schemes on real data sets is also given to illustrate the implementation and procedural details of the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Control charts are extensively used in processes and are very helpful in determining the special cause variations so that a timely action may be taken to eliminate them. One of the charting procedures is the Shewhart‐type control charts, which are used mainly to detect large shifts. Two alternatives to the Shewhart‐type control charts are the cumulative (CUSUM) control charts and the exponentially weighted moving average (EWMA) control charts that are specially designed to detect small and moderately sustained changes in quality. Enhancing the ability of design structures of control charts is always desirable and one may do it in different ways. In this article, we propose two runs rules schemes to be applied on EWMA control charts and evaluate their performance in terms of the Average Run Length (ARL). Comparisons of the proposed schemes are made with some existing representative CUSUM and EWMA‐type counterparts used for small and moderate shifts, including the classical EWMA, the classical CUSUM, the fast initial response CUSUM and EWMA, the weighted CUSUM, the double CUSUM, the distribution‐free CUSUM and the runs rules schemes‐based CUSUM. The findings of the study reveal that the proposed schemes are able to perform better than all the other schemes under investigation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号