首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lateral heterogeneities in atomically thin 2D materials such as in‐plane heterojunctions and grain boundaries (GBs) provide an extrinsic knob for manipulating the properties of nano‐ and optoelectronic devices and harvesting novel functionalities. However, these heterogeneities have the potential to adversely affect the performance and reliability of the 2D devices through the formation of nanoscopic hot‐spots. In this report, scanning thermal microscopy (SThM) is utilized to map the spatial distribution of the temperature rise within monolayer transition metal dichalcogenide (TMD) devices upon dissipating a high electrical power through a lateral interface. The results directly demonstrate that lateral heterojunctions between MoS2 and WS2 do not largely impact the distribution of heat dissipation, while GBs of MoS2 appreciably localize heating in the device. High‐resolution scanning transmission electron microscopy reveals that the atomic structure is nearly flawless around heterojunctions but can be quite defective near GBs. The results suggest that the interfacial atomic structure plays a crucial role in enabling uniform charge transport without inducing localized heating. Establishing such structure–property‐processing correlation provides a better understanding of lateral heterogeneities in 2D TMD systems which is crucial in the design of future all‐2D electronic circuitry with enhanced functionalities, lifetime, and performance.  相似文献   

2.
Van der Waals (vdW) epitaxy allows the fabrication of various heterostructures with dramatically released lattice matching conditions. This study demonstrates interface‐driven stacking boundaries in WS2 using epitaxially grown tungsten disulfide (WS2) on wrinkled graphene. Graphene wrinkles function as highly reactive nucleation sites on WS2 epilayers; however, they impede lateral growth and induce additional stress in the epilayer due to anisotropic friction. Moreover, partial dislocation‐driven in‐plane strain facilitates out‐of‐plane buckling with a height of 1 nm to release in‐plane strain. Remarkably, in‐plane strain relaxation at partial dislocations restores the bandgap to that of monolayer WS2 due to reduced interlayer interaction. These findings clarify significant substrate morphology effects even in vdW epitaxy and are potentially useful for various applications involving modifying optical and electronic properties by manipulating extended 1D defects via substrate morphology control.  相似文献   

3.
Recently, piezoelectricity has been observed in 2D atomically thin materials, such as hexagonal‐boron nitride, graphene, and transition metal dichalcogenides (TMDs). Specifically, exfoliated monolayer MoS2 exhibits a high piezoelectricity that is comparable to that of traditional piezoelectric materials. However, monolayer TMD materials are not regarded as suitable for actual piezoelectric devices due to their insufficient mechanical durability for sustained operation while Bernal‐stacked bilayer TMD materials lose noncentrosymmetry and consequently piezoelectricity. Here, it is shown that WSe2 bilayers fabricated via turbostratic stacking have reliable piezoelectric properties that cannot be obtained from a mechanically exfoliated WSe2 bilayer with Bernal stacking. Turbostratic stacking refers to the transfer of each chemical vapor deposition (CVD)‐grown WSe2 monolayer to allow for an increase in degrees of freedom in the bilayer symmetry, leading to noncentrosymmetry in the bilayers. In contrast, CVD‐grown WSe2 bilayers exhibit very weak piezoelectricity because of the energetics and crystallographic orientation. The flexible piezoelectric WSe2 bilayers exhibit a prominent mechanical durability of up to 0.95% of strain as well as reliable energy harvesting performance, which is adequate to drive a small liquid crystal display without external energy sources, in contrast to monolayer WSe2 for which the device performance becomes degraded above a strain of 0.63%.  相似文献   

4.
Layered MoS2 is a prospective candidate for use in energy harvesting, valleytronics, and nanoelectronics. Its properties strongly related to its stacking configuration and the number of layers. Due to its atomically thin nature, understanding the atomic‐level and structural modifications of 2D transition metal dichalcogenides is still underdeveloped, particularly the spatial control and selective precision. Therefore, the development of nanofabrication techniques is essential. Here, an atomic‐scale approach used to sculpt 2D few‐layer MoS2 into lateral heterojunctions via in situ scanning/transmission electron microscopy (STEM/TEM) is developed. The dynamic evolution is tracked using ultrafast and high‐resolution filming equipment. The assembly behaviors inherent to few‐layer 2D‐materials are observed during the process and included the following: scrolling, folding, etching, and restructuring. Atomic resolution STEM is employed to identify the layer variation and stacking sequence for this new 2D‐architecture. Subsequent energy‐dispersive X‐ray spectroscopy and electron energy loss spectroscopy analyses are performed to corroborate the elemental distribution. This sculpting technique that is established allows for the formation of sub‐10 nm features, produces diverse nanostructures, and preserves the crystallinity of the material. The lateral heterointerfaces created in this study also pave the way for the design of quantum‐relevant geometries, flexible optoelectronics, and energy storage devices.  相似文献   

5.
Ultrathin 2D materials can offer promising opportunities for exploring advanced energy storage systems, with satisfactory electrochemical performance. Engineering atomic interfaces by stacking 2D crystals holds huge potential for tuning material properties at the atomic level, owing to the strong layer–layer interactions, enabling unprecedented physical properties. In this work, atomically thin Bi2MoO6 sheets are acquired that exhibit remarkable high‐rate cycling performance in Li‐ion batteries, which can be ascribed to the interlayer coupling effect, as well as the 2D configuration and intrinsic structural stability. The unbalanced charge distribution occurs within the crystal and induces built‐in electric fields, significantly boosting lithium ion transfer dynamics, while the extra charge transport channels generated on the open surfaces further promote charge transport. The in situ synchrotron X‐ray powder diffraction results confirm the material's excellent structural stability. This work provides some insights for designing high‐performance electrode materials for energy storage by manipulating the interface interaction and electronic structure.  相似文献   

6.
A novel phase transition, from multilayered 2H‐MoTe2 to a parallel bundle of sub‐nanometer‐diameter metallic Mo6Te6 nanowires (NWs) driven by catalyzer‐free thermal‐activation (400–500 °C) under vacuum, is demonstrated. The NWs form along the 〈11–20〉 2H‐MoTe2 crystallographic directions with lengths in the micrometer range. The metallic NWs can act as an efficient hole injection layer on top of 2H‐MoTe2 due to favorable band‐alignment. In particular, an atomically sharp MoTe2/Mo6Te6 interface and van der Waals gap with the 2H layers are preserved. The work highlights an alternative pathway for forming a new transition metal dichalcogenide phase and will enable future exploration of its intrinsic transportation properties.  相似文献   

7.
The coalescence of randomly distributed grains with different crystallographic orientations can result in pervasive grain boundaries (GBs) in 2D materials during their chemical synthesis. GBs not only are the inherent structural imperfection that causes influential impacts on structures and properties of 2D materials, but also have emerged as a platform for exploring unusual physics and functionalities stemming from dramatic changes in local atomic organization and even chemical makeup. Here, recent advances in studying the formation mechanism, atomic structures, and functional properties of GBs in a range of 2D materials are reviewed. By analyzing the growth mechanism and the competition between far-field strain and local chemical energies of dislocation cores, a complete understanding of the rich GB morphologies as well as their dependence on lattice misorientations and chemical compositions is presented. Mechanical, electronic, and chemical properties tied to GBs in different materials are then discussed, towards raising the concept of using GBs as a robust atomic-scale scaffold for realizing tailored functionalities, such as magnetism, luminescence, and catalysis. Finally, the future opportunities in retrieving GBs for making functional devices and the major challenges in the controlled formation of GB structures for designed applications are commented.  相似文献   

8.
By stacking various two-dimensional (2D) atomic crystals on top of each other, it is possible to create multilayer heterostructures and devices with designed electronic properties. However, various adsorbates become trapped between layers during their assembly, and this not only affects the resulting quality but also prevents the formation of a true artificial layered crystal upheld by van der Waals interaction, creating instead a laminate glued together by contamination. Transmission electron microscopy (TEM) has shown that graphene and boron nitride monolayers, the two best characterized 2D crystals, are densely covered with hydrocarbons (even after thermal annealing in high vacuum) and exhibit only small clean patches suitable for atomic resolution imaging. This observation seems detrimental for any realistic prospect of creating van der Waals materials and heterostructures with atomically sharp interfaces. Here we employ cross sectional TEM to take a side view of several graphene-boron nitride heterostructures. We find that the trapped hydrocarbons segregate into isolated pockets, leaving the interfaces atomically clean. Moreover, we observe a clear correlation between interface roughness and the electronic quality of encapsulated graphene. This work proves the concept of heterostructures assembled with atomic layer precision and provides their first TEM images.  相似文献   

9.
Chemical vapor deposition and growth dynamics of highly anisotropic 2D lateral heterojunctions between pseudo‐1D ReS2 and isotropic WS2 monolayers are reported for the first time. Constituent ReS2 and WS2 layers have vastly different atomic structure, crystallizing in anisotropic 1T′ and isotropic 2H phases, respectively. Through high‐resolution scanning transmission electron microscopy, electron energy loss spectroscopy, and angle‐resolved Raman spectroscopy, this study is able to provide the very first atomic look at intimate interfaces between these dissimilar 2D materials. Surprisingly, the results reveal that ReS2 lateral heterojunctions to WS2 produce well‐oriented (highly anisotropic) Re‐chains perpendicular to WS2 edges. When vertically stacked, Re‐chains orient themselves along the WS2 zigzag direction, and consequently, Re‐chains exhibit six‐fold rotation, resulting in loss of macroscopic scale anisotropy. The degree of anisotropy of ReS2 on WS2 largely depends on the domain size, and decreases for increasing domain size due to randomization of Re‐chains and formation of ReS2 subdomains. Present work establishes the growth dynamics of atomic junctions between novel anisotropic/isotropic 2D materials, and overall results mark the very first demonstration of control over anisotropy direction, which is a significant leap forward for large‐scale nanomanufacturing of anisotropic systems.  相似文献   

10.
Semiconductor heterostructures have played a critical role as the enabler for new science and technology. The emergence of transition‐metal dichalcogenides (TMDs) as atomically thin semiconductors has opened new frontiers in semiconductor heterostructures either by stacking different TMDs to form vertical heterojunctions or by stitching them laterally to form lateral heterojunctions via direct growth. In conventional semiconductor heterostructures, the design of multijunctions is critical to achieve carrier confinement. Analogously, successful synthesis of a monolayer WS2/WS2(1?x )Se2x /WS2 multijunction lateral heterostructure via direct growth by chemical vapor deposition is reported. The grown structures are characterized by Raman, photoluminescence, and annular dark‐field scanning transmission electron microscopy to determine their lateral compositional profile. More importantly, using microwave impedance microscopy, it is demonstrated that the local photoconductivity in the alloy region can be tailored and enhanced by two orders of magnitude over pure WS2. Finite element analysis confirms that this effect is due to the carrier diffusion and confinement into the alloy region. This work exemplifies the technological potential of atomically thin lateral heterostructures in optoelectronic applications.  相似文献   

11.
Alloying 2D transition metal dichalcogenides has opened up new opportunities for bandgap engineering and phase control. Developing a simple and scalable synthetic route is therefore essential to explore the full potential of these alloys with tunable optical and electrical properties. Here, the direct synthesis of monolayer WTe2xS2(1?x) alloys via one‐step chemical vapor deposition (CVD) is demonstrated. The WTe2xS2(1?x) alloys exhibit two distinct phases (1H semiconducting and 1T ′ metallic) under different chemical compositions, which can be controlled by the ratio of chalcogen precursors as well as the H2 flow rate. Atomic‐resolution scanning transmission electron microscopy–annular dark field (STEM‐ADF) imaging reveals the atomic structure of as‐formed 1H and 1T ′ alloys. Unlike the commonly observed displacement of metal atoms in the 1T ′ phase, local displacement of Te atoms from original 1H lattice sites is discovered by combined STEM‐ADF imaging and ab initio molecular dynamics calculations. The structure distortion provides new insights into the structure formation of alloys. This generic synthetic approach is also demonstrated for other telluride‐based ternary monolayers such as WTe2xSe2(1?x) single crystals.  相似文献   

12.
In planar perovskite solar cells, it is vital to engineer the extraction and recombination of electron–hole pairs at the electron transport layer/perovskite interface for obtaining high performance. This study reports a novel titanium oxide (TiO2) bilayer with different Fermi energy levels by combing atomic layer deposition and spin‐coating technique. Energy band alignments of TiO2 bilayer can be modulated by controlling the deposition order of layers. The TiO2 bilayer based perovskite solar cells are highly efficient in carrier extraction, recombination suppression, and defect passivation, and thus demonstrate champion efficiencies up to 16.5%, presenting almost 50% enhancement compared to the TiO2 single layer based counterparts. The results suggest that the bilayer with type II band alignment as electron transport layers provides an efficient approach for constructing high‐performance planar perovskite solar cells.  相似文献   

13.
Atomically thin oxychalcogenides have been attracting intensive attention for their fascinating fundamental properties and application prospects. Bi2O2Se, a representative of layered oxychalcogenides, has emerged as an air‐stable high‐mobility 2D semiconductor that holds great promise for next‐generation electronics. The preparation and device fabrication of high‐quality Bi2O2Se crystals down to a few atomic layers remains a great challenge at present. Here, molecular beam epitaxy (MBE) of atomically thin Bi2O2Se films down to monolayer on SrTiO3 (001) substrate is achieved by co‐evaporating Bi and Se precursors in oxygen atmosphere. The interfacial atomic arrangements of MBE‐grown Bi2O2Se/SrTiO3 are unambiguously revealed, showing an atomically sharp interface and atom‐to‐atom alignment. Importantly, the electronic band structures of one‐unit‐cell (1‐UC) thick Bi2O2Se films are observed by angle‐resolved photoemission spectroscopy (ARPES), showing low effective mass of ≈0.15 m0 and bandgap of ≈0.8 eV. These results may be constructive to the synthesis of other 2D oxychalcogenides and investigation of novel physical properties.  相似文献   

14.
We report the superlubric sliding of monolayer tungsten disulfide (WS2) on epitaxial graphene (EG) grown on silicon carbide (SiC). Single-crystalline WS2 flakes with lateral size of hundreds of nanometers are obtained via chemical vapor deposition (CVD) on EG. Microscopic and diffraction analyses indicate that the WS2/EG stack is predominantly aligned with zero azimuthal rotation. The present experiments show that, when perturbed by a scanning probe microscopy (SPM) tip, the WS2 flakes are prone to slide over the graphene surfaces at room temperature. Atomistic force field-based molecular dynamics simulations indicate that, through local physical deformation of the WS2 flake, the scanning tip releases enough energy to the flake to overcome the motion activation barrier and trigger an ultralow-friction rototranslational displacement, that is superlubric. Experimental observations show that, after sliding, the WS2 flakes come to rest with a rotation of nπ/3 with respect to graphene. Moreover, atomically resolved measurements show that the interface is atomically sharp and the WS2 lattice is strain-free. These results help to shed light on nanotribological phenomena in van der Waals (vdW) heterostacks, and suggest that the applicative potential of the WS2/graphene heterostructure can be extended by novel mechanical prospects.
  相似文献   

15.
Quantitatively mapping and monitoring the strain distribution in 2D materials is essential for their physical understanding and function engineering. Optical characterization methods are always appealing due to unique noninvasion and high‐throughput advantages. However, all currently available optical spectroscopic techniques have application limitation, e.g., photoluminescence spectroscopy is for direct‐bandgap semiconducting materials, Raman spectroscopy is for ones with Raman‐active and strain‐sensitive phonon modes, and second‐harmonic generation spectroscopy is only for noncentrosymmetric ones. Here, a universal methodology to measure the full strain tensor in any 2D crystalline material by polarization‐dependent third‐harmonic generation is reported. This technique utilizes the third‐order nonlinear optical response being a universal property in 2D crystals and the nonlinear susceptibility has a one‐to‐one correspondence to strain tensor via a photoelastic tensor. The photoelastic tensor of both a noncentrosymmetric D3h WS2 monolayer and a centrosymmetric D3d WS2 bilayer is successfully determined, and the strain tensor distribution in homogenously strained and randomly strained monolayer WS2 is further mapped. In addition, an atlas of photoelastic tensors to monitor the strain distribution in 2D materials belonging to all 32 crystallographic point groups is provided. This universal characterization on strain tensor should facilitate new functionality designs and accelerate device applications in 2D‐materials‐based electronic, optoelectronic, and photovoltaic devices.  相似文献   

16.
Dislocation core structures in low-angle boundaries of Nb-doped SrTiO3 bicrystals were investigated by high-resolution electron microscopy. Bicrystals with tilt angles of 2°, 4°, 6° and 8° with respect to the [001] zone axis were prepared by joining two single crystals at 1873 K. All of the boundaries consisted of a regular array of dislocations whose spacing gradually decreased with an increase in tilt angle. Except for the 2° tilt-angle boundary, the dislocation cores exhibited a dissociation from a[010] into two partials of a/2[010] on (100). Furthermore, two kinds of dislocation core structures were observed; Sr–Sr atomic columns and Ti–O atomic columns inside the cores. In addition, it was found that the positioning of adjacent cores along the boundary tended to change from a linear form to a zig-zagg shape as the tilt angle was increased from 4° to 8°. In the case of the linear array, dislocation core structures including Sr–Sr columns or Ti–O columns alternately appear. In contrast, only one core structure was observed in the zig-zagged array. On the other hand, the dislocation cores in the 2°-tilt-angle boundary had another type of dissociation with a/2[110] or a/2[111] partials, which included the twist component at a tilt axis of [001].  相似文献   

17.
Recently, monolayers of van der Waals materials, including transition metal dichalcogenides (TMDs), are considered ideal building blocks for constructing 2D artificial lattices and heterostructures. Heterostructures with multijunctions of more than two monolayer TMDs are intriguing for exploring new physics and materials properties. Obtaining in‐plane heterojunctions of monolayer TMDs with atomically sharp interfaces is very significant for fundamental research and applications. Currently, multistep synthesis for more than two monolayer TMDs remains a challenge because decomposition or compositional alloying is thermodynamically favored at the high growth temperature. Here, a multistep chemical vapor deposition (CVD) synthesis of the in‐plane multijunctions of monolayer TMDs is presented. A low growth temperature synthesis is developed to avoid compositional fluctuations of as‐grown TMDs, defects formations, and interfacial alloying for high heterointerface quality and thermal stability of monolayer TMDs. With optimized parameters, atomically sharp interfaces are successfully achieved in the synthesis of in‐plane artificial lattices of the WS2/WSe2/MoS2 at reduced growth temperatures. Growth behaviors as well as the heterointerface quality are carefully studied in varying growth parameters. Highly oriented strain patterns are found in the second harmonic generation imaging of the TMD multijunctions, suggesting that the in‐plane heteroepitaxial growth may induce distortion for unique material symmetry.  相似文献   

18.
Engineered atomic dislocations have been used to create a novel, Sb2Te3 nanoplate‐like architecture that exhibits a unique antisymmetric chirality. High‐resolution transmission electron microscopy (HRTEM) coupled with atomic force microscopy and X‐ray photoelectron spectroscopy reveals the architectures to be extremely well ordered with little residual strain. Surface modification of these topologically complex macrostructures (≈3 µm) has been achieved by direct growth of metallic Ag nanoparticles onto the edge sites of the Sb2Te3. Again, HRTEM shows this nanoparticle decoration to be atomically sharp at the boundaries and regularly spaced along the selvedge of the nanostructure. Transport experiments of densified films of these assemblies exhibit marked increases in carrier density after nanoengineering, yielding 3.5 × 104 S m?1 in electrical conductivity. An increased Seebeck coefficient by 20% in parallel with electrical conductivity is also observed. This gives a thermoelectric power factor of 371 µW m?1 K?2, which is the highest value for a flexible, freestanding film to date. These results suggest an entirely new direction in the search for wearable power harvesters based on topologically complex, low‐dimensional nanoassemblies.  相似文献   

19.
利用透射电镜和高分辨透射电镜(HRTEM)研究了高压扭转大塑性变形纳米结构Al–Mg合金中的位错和晶界结构。结果表明: 对尺寸小于100 nm的晶粒, 晶内无位错, 其晶界清晰平直; 而尺寸大于200 nm的大晶粒通常由几个亚晶或位错胞结构组成, 局部位错密度可高达1017 m-2, 这些位错往往以位错偶和位错环的形式出现。用HRTEM观察到了小角度及大角度非平衡晶界、小角度平衡晶界和大角度Σ9平衡晶界等不同的晶界结构。基于实验结果, 分析了局部高密度位错、位错胞和非平衡晶界等在晶粒细化过程中的作用, 提出了高压扭转Al–Mg合金的晶粒细化机制。  相似文献   

20.
The metallic 1T phase of WS2 (1T‐WS2), which boosts the charge transfer between the electron source and active edge sites, can be used as an efficient electrocatalyst for the hydrogen evolution reaction (HER). As the semiconductor 2H phase of WS2 (2H‐WS2) is inherently stable, methods for synthesizing 1T‐WS2 are limited and complicated. Herein, a uniform wafer‐scale 1T‐WS2 film is prepared using a plasma‐enhanced chemical vapor deposition (PE‐CVD) system. The growth temperature is maintained at 150 °C enabling the direct synthesis of 1T‐WS2 films on both rigid dielectric and flexible polymer substrates. Both the crystallinity and number of layers of the as‐grown 1T‐WS2 are verified by various spectroscopic and microscopic analyses. A distorted 1T structure with a 2a0 × a0 superlattice is observed using scanning transmission electron microscopy. An electrochemical analysis of the 1T‐WS2 film demonstrates its similar catalytic activity and high durability as compared to those of previously reported untreated and planar 1T‐WS2 films synthesized with CVD and hydrothermal methods. The 1T‐WS2 does not transform to stable 2H‐WS2, even after a 700 h exposure to harsh catalytic conditions and 1000 cycles of HERs. This synthetic strategy can provide a facile method to synthesize uniform 1T‐phase 2D materials for electrocatalysis applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号