首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel DNA‐gated mesoporous silica nanoparticle (MSN) vehicles functionalized with disulfide‐linked acridinamine intercalators are constructed for multi‐responsive controlled release. The DNA‐gated MSN vehicles release cargo encapsulated in the MSN pores under different stimuli, including disulfide reducing agents, elevated temperature, and deoxyribonuclease I (DNase I), for codelivery of drugs and DNA/genes in different forms. Furthermore, the cascade release of encapsulated and intercalative drugs is controlled by AND logic gates in combination of dual stimuli. The ingeniously designed DNA‐gated MSN vehicles integrates multiple responses and AND logic gate operations into a single smart nanodevice not only for codelivery of drugs and DNA/genes but also for cascade release of two drugs and has promising biological applications to meet diverse requirements of controlled release.  相似文献   

2.
This work aims at developing an immunotherapeutic strategy to deliver a cancer DNA vaccine targeting dendritic cells (DCs), to trigger their maturation and antitumor function, and reduce immune escape using a polymeric nanocomplex of paclitaxel (PTX)‐encapsulated sulfobutylether‐β‐cyclodextrin (SBE)/mannosylated N,N,N‐trimethylchitosan (mTMC)/DNA. To enhance DC‐targeting and revoke immunosuppression is the major challenge for eliciting effective antitumor immunity. This codelivery system is characterized by using low‐dose PTX as an adjuvant that is included inside SBE, and the PTX/SBE further serves as an anionic crosslinker to self‐assemble with the cationic mTMC/DNA polyplexes. This system is used in combination with a microneedle for transcutaneous vaccination. Once penetrating into the epidermis, the mannosylated nanocomplexes would preferentially deliver the pTRP‐2 DNA vaccine inside the DCs. Phenotypic maturation is demonstrated by the increased expression of costimulatory molecules of CD80 and CD86, and the elevated secretion of IL‐12p70. The mixed leucocyte reactions reveal that the PTX/SBE‐mTMC/DNA nanocomplexes enhance the proliferation of CD4+ and CD8+ T cells, and inhibit the generation of immune‐suppressive FoxP3+ T cells. The system shows high antitumor efficacy in vivo. The PTX/SBE‐mTMC/DNA nanocomplexes for DC‐targeted codelivery of DNA vaccine and adjuvant PTX yield synergistic effects on the DC maturation and its presenting functions, thus increasing immune stimulation and reducing immune escape.  相似文献   

3.
Patients with advanced melanoma that is of low tumor‐associated antigen (TAA) expression often respond poorly to PD‐1/PD‐L1 blockade therapy. Epigenetic modulators, such as hypomethylation agents (HMAs), can enhance the antitumor immune response by inducing TAA expression. Here, a dual bioresponsive gel depot that can respond to the acidic pH and reactive oxygen species (ROS) within the tumor microenvironment (TME) for codelivery of anti‐PD1 antibody (aPD1) and Zebularine (Zeb), an HMA, is engineered. aPD1 is first loaded into pH‐sensitive calcium carbonate nanoparticles (CaCO3 NPs), which are then encapsulated in the ROS‐responsive hydrogel together with Zeb (Zeb‐aPD1‐NPs‐Gel). It is demonstrated that this combination therapy increases the immunogenicity of cancer cells, and also plays roles in reversing immunosuppressive TME, which contributes to inhibiting the tumor growth and prolonging the survival time of B16F10‐melanoma‐bearing mice.  相似文献   

4.
Near‐infrared (NIR) laser‐controlled gene delivery presents some benefits in gene therapy, inducing enhanced gene transfection efficiency. In this study, a “photothermal transfection” agent is obtained by wrapping poly(ethylenimine)‐cholesterol derivatives (PEI‐Chol) around single‐walled carbon nanotubes (SWNTs). The PEI‐Chol modified SWNTs (PCS) are effective in compressing DNA molecules and protecting them from DNaseI degradation. Compared to the complexes formed by PEI with DNA (PEI/DNA), complexes of PCS and DNA that are formed (PCS/DNA) exhibit a little lower toxicity to HEK293 and HeLa cells under the same PEI molecule weight and weight ratios. Notably, caveolae‐mediated cellular uptake of PCS/DNA occurs, which results in a safer intracellular transport of the gene due to the decreased lysosomal degradation in comparison with that of PEI/DNA whose internalization mainly depends on clathrin rather than caveolae. Furthermore, unlike PEI/DNA, PCS/DNA exhibits a photothermal conversion ability, which promotes DNA release from PCS under NIR laser irradiation. The NIR laser‐mediated photothermal transfection of PCS10K/plasmid TP53 (pTP53) results in more apoptosis and necrosis of HeLa cells in vitro than other groups, and achieves a higher tumor‐growth inhibition in vivo than naked pTP53, PEI25K/pTP53, and PCS10K/pTP53 alone. The enhanced transfection efficiency of PCS/DNA can be attributed to more efficient DNA internalization into the tumor cells, promotes detachment of DNA from PCS under the mediation of NIR laser and higher DNA stability in the cells due to caveolae‐mediated cellular uptake of the complexes.  相似文献   

5.
Combination chemotherapy with both hydrophobic and hydrophilic therapeutic drugs is clinically vital toward the treatment of persistent cancers. Though conventional liposomes and polymeric vesicles possessing hydrophobic bilayers and aqueous interiors can serve as codelivery nanocarriers, it remains a considerable challenge to achieve synchronized release of both types of drugs due to distinct encapsulation mechanisms; premature release of water‐soluble cargos from unstable liposomes and ruptured vesicles is also a major concern. Herein, the fabrication of physiologically stable polyprodrug‐gated crosslinked vesicles (GCVs) via the self‐assembly of camptothecin (CPT) polyprodrug amphiphiles and in situ bilayer crosslinking through traceless sol–gel reaction is reported. Polyprodrug‐GCVs possess high CPT loading (>30 wt%) and minimized leakage of encapsulated hydrophilic doxorubicin (DOX) hydrochloride due to the suppressed permeability of crosslinked membrane, exhibiting extended blood circulation (t 1/2 > 13 h) with caged cytotoxicity in physiological circulation. Upon cellular uptake by cancer cells, cytosolic reductive milieu‐triggered CPT unplugging from vesicle bilayers is demonstrated to generate hydrophilic mesh channels and make the membrane highly permeable. Concurrently, it will promote DOX corelease from hydrophilic lumen (≈36‐fold increase). The reduction‐activated combination chemotherapeutic potency based on polyprodrug‐GCVs is confirmed by both in vitro and in vivo explorations.  相似文献   

6.
A multifunctional nanoparticle based on gold nanorod (GNR), utilizing mRNA triggered chemo‐drug release and near‐infrared photoacoustic effect, is developed for a combined chemo‐photoacoustic therapy. The constructed nanoparticle (GNR‐DNA/FA:DOX) comprises three functional components: (i) GNR as the drug delivery platform and photoacoustic effect enhancer; (ii) toehold‐possessed DNA dressed on the GNR to load doxorubicin (DOX) to implement a tumor cell specific chemotherapy; and (iii) folate acid (FA) modified on GNR to guide the nanoparticle to target tumor cells. The results show that, upon an effective and specific delivery of the nanoparticles to the tumor cells with overexpressed folate receptors, the cytotoxic DOX loaded on the GNR‐DNA nanoplatform can be released through DNA displacement reaction in melanoma‐associated antigen gene mRNA expressed cells. With 808 nm pulse laser irradiation, the photoacoustic effect of the GNR leads to a direct physical damage to the cells. The combined treatment of the two modalities can effectively destroy tumor cells and eradicate the tumors with two distinctively different and supplementing mechanisms. With the nanoparticle, photoacoustic imaging is successfully performed in situ to monitor the drug distribution and tumor morphology for therapeutical guidance. With further in‐depth investigation, the proposed nanoparticle may provide an effective and safe alternative cancer treatment modality.  相似文献   

7.
A pulmonary codelivery system that can simultaneously deliver doxorubicin (DOX) and Bcl2 siRNA to the lungs provides a promising local treatment strategy for lung cancers. In this study, DOX is conjugated onto polyethylenimine (PEI) by using cis‐aconitic anhydride (CA, a pH‐sensitive linker) to obtain PEI‐CA‐DOX conjugates. The PEI‐CA‐DOX/siRNA complex nanoparticles are formed spontaneously via electrostatic interaction between cationic PEI‐CA‐DOX and anionic siRNA. The drug release experiment shows that DOX releases faster at acidic pH than at pH 7.4. Moreover, PEI‐CA‐DOX/Bcl2 siRNA complex nanoparticles show higher cytotoxicity and apoptosis induction in B16F10 cells than those treated with either DOX or Bcl2 siRNA alone. When the codelivery systems are directly sprayed into the lungs of B16F10 melanoma‐bearing mice, the PEI‐CA‐DOX/Bcl2 siRNA complex nanoparticles exhibit enhanced antitumor efficacy compared with the single delivery of DOX or Bcl2 siRNA. Compared with systemic delivery, most drug and siRNA show a long‐term retention in the lungs via pulmonary delivery, and a considerable number of the drug and siRNA accumulate in tumor tissues of lungs, but rarely in normal lung tissues. The PEI‐CA‐DOX/Bcl2 siRNA complex nanoparticles are promising for the treatment of metastatic lung cancer by pulmonary delivery with low side effects on the normal tissues.  相似文献   

8.
Cancer immunotherapy has achieved promising clinical responses in recent years owing to the potential of controlling metastatic disease. However, there is a limited research to prove the superior therapeutic efficacy of immunotherapy on breast cancer compared with melanoma and non‐small‐cell lung cancer because of its limited expression of PD‐L1, low infiltration of cytotoxic T lymphocytes (CTLs), and high level of myeloid‐derived suppressor cells (MDSCs). Herein, a multifunctional nanoplatform (FA‐CuS/DTX@PEI‐PpIX‐CpG nanocomposites, denoted as FA‐CD@PP‐CpG) for synergistic phototherapy (photodynamic therapy (PDT), photothermal therapy (PTT) included) and docetaxel (DTX)‐enhanced immunotherapy is successfully developed. The nanocomposites exhibit excellent PDT efficacy and photothermal conversion capability under 650 and 808 nm irradiation, respectively. More significantly, FA‐CD@PP‐CpG with no obvious side effects can remarkably inhibit the tumor growth in vivo based on a 4T1‐tumor‐bearing mice modal. A low dosage of loaded DTX in FA‐CD@PP‐CpG can promote infiltration of CTLs to improve efficacy of anti‐PD‐L1 antibody (aPD‐L1), suppress MDSCs, and effectively polarize MDSCs toward M1 phenotype to reduce tumor burden, further to enhance the antitumor efficacy. Taken together, FA‐CD@PP‐CpG nanocomposites offer an efficient synergistic therapeutic modality in docetaxel‐enhanced immunotherapy for clinical application of breast cancer.  相似文献   

9.
Insufficient drug release as well as poor drug penetration are major obstacles for effective nanoparticles (NPs)‐based cancer therapy. Herein, the high aqueous instability of amorphous calcium carbonate (ACC) is employed to construct doxorubicin (DOX) preloaded and monostearin (MS) coated “Pandora's box” (MS/ACC–DOX) NPs for lipase‐triggered water‐responsive drug release in lipase‐overexpressed tumor tissue to induce a neighboring effect and enhance drug penetration. MS as a solid lipid can prevent potential drug leakage of ACC–DOX NPs during the circulatory process, while it can be readily be disintegrated in lipase‐overexpressed SKOV3 cells to expose the ACC–DOX core. The high aqueous instability of ACC will lead to burst release of the encapsulated DOX to induce apoptosis and cytotoxicity to kill the tumor cells. The liberated NPs from the dead or dying cells continue to respond to the ubiquitous aqueous environment to sufficiently release DOX once unpacked, like the “Pandora's box”, leading to severe cytotoxicity to neighboring cells (neighboring effect). Moreover, the continuously released free DOX molecules can readily diffused through the tumor extracellular matrix to enhance drug penetration to deep tumor tissue. Both effects contribute to achieve elevated antitumor benefits.  相似文献   

10.
Red blood cell (RBC) membrane‐cloaked nanoparticles, reserving the intact cell membrane structure and membrane protein, can gain excellent cell‐specific functions such as long blood circulation and immune escape, providing a promising therapy nanoplatform for drug delivery. Herein, a novel RBC membrane biomimetic combination therapeutic system with tumor targeting ability is constructed by embedding bovine serum albumin (BSA) encapsulated with 1,2‐diaminocyclohexane‐platinum (II) (DACHPt) and indocyanine green (ICG) in the targeting peptide‐modified erythrocyte membrane (R‐RBC@BPtI) for enhancing tumor internalization and synergetic chemophototherapy. R‐RBC@BPtI displays excellent stability and high encapsulation efficiency with multiple cores enveloped in the membrane. Benefited from the stealth functionality and targeting modification of erythrocyte membranes, R‐RBC@BPtI can significantly promote tumor targeting and cellular uptake. Under the near‐infrared laser stimuli, R‐RBC@BPtI presents remarkable instability by singlet oxygen and heat‐mediated cleavage so as to trigger effective drug release, thereby achieving deep penetration and accumulation of DACHPt and ROS in the tumor site. Consequently, R‐RBC@BPtI with tumor‐specific targeting ability accomplishes remarkable ablation of tumors and suppressed lung metastasis in vivo by photothermal and chemotherapy combined ablation under phototriggering. This research provides a novel strategy of targeted biomimetic nanoplatforms for combined cancer chemotherapy–phototherapy.  相似文献   

11.
Nanodrug‐based cancer therapy is impeded by poor penetration into deep tumor tissues mainly due to the overexpression of hyaluronic acid (HA) in the tumor extracellular matrix (ECM). Although modification of nanoparticles (NPs) with hyaluronidase (HAase) is a potent strategy, it remains challenging to get a uniform distribution of drug at the tumor site because of the internalization of NPs by the cells in the tumor and HA regeneration. Herein, an intelligent nanocarrier, which can release HAase in response to the acidic tumor microenvironment (pH 6.5) and perform a strong neighboring effect with size reduction to overcome the above two problems and accomplish drug deep tumor penetration in vivo, is reported. In this design, HAase is encapsulated on the surfaces of doxorubicin (DOX) preloaded ZnO‐DOX NPs using a charge convertible polymer PEG‐PAH‐DMMA (ZDHD). The polymer can release HAase to degrade HA in the tumor ECM (pH 6.5). ZnO‐DOX NPs can release DOX in lysosomes (pH 4.5) to induce cell apoptosis, and exert a neighboring effect with size reduction to infect neighboring cells. The hierarchical targeted release of HAase and drugs is demonstrated to enhance tumor penetration and decrease side effects in vivo. This work shows promise for further application of ZDHD NPs in cancer therapy.  相似文献   

12.
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated (Cas) enzyme, Cas13a, holds great promise in cancer treatment due to its potential for selective destruction of tumor cells via collateral effects after target recognition. However, these collateral effects do not specifically target tumor cells and may cause safety issues when administered systemically. Herein, a dual‐locking nanoparticle (DLNP) that can restrict CRISPR/Cas13a activation to tumor tissues is described. DLNP has a core–shell structure, in which the CRISPR/Cas13a system (plasmid DNA, pDNA) is encapsulated inside the core with a dual‐responsive polymer layer. This polymer layer endows the DLNP with enhanced stability during blood circulation or in normal tissues and facilitates cellular internalization of the CRISPR/Cas13a system and activation of gene editing upon entry into tumor tissue. After carefully screening and optimizing the CRISPR RNA (crRNA) sequence that targets programmed death‐ligand 1 (PD‐L1), DLNP demonstrates the effective activation of T‐cell‐mediated antitumor immunity and the reshaping of immunosuppressive tumor microenvironment (TME) in B16F10‐bearing mice, resulting in significantly enhanced antitumor effect and improved survival rate. Further development by replacing the specific crRNA of target genes can potentially make DLNP a universal platform for the rapid development of safe and efficient cancer immunotherapies.  相似文献   

13.
Upconversion nanocrystals (UCNs) display near‐infrared (NIR)‐responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell‐based theranostic system designed by UCN integration with a folate (FA)‐conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB‐Dox) and a multivalent FA‐conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB‐Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10−9m ) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB‐Dox)(G5FA) by FAR‐positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB‐Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN‐dendrimer nanocomposites for cell type specific NIR imaging and light‐controlled drug release, thus serving as a new theranostic system.  相似文献   

14.
Poor drug penetration into tumor cells and tissues is a worldwide difficulty in cancer therapy. A strategy is developed for virion‐like membrane‐breaking nanoparticles (MBNs) to smoothly accomplish tumor‐activated cell‐and‐tissue dual‐penetration for surmounting impermeable drug‐resistant cancer. Tailor‐made dendritic arginine‐rich peptide prodrugs are designed to mimic viral protein transduction domains and globular protein architectures. Attractively, these protein mimics self‐assemble into virion‐like nanoparticles in aqueous solution, having highly ordered secondary structure. Tumor‐specific acidity conditions would activate the membrane‐breaking ability of these virion‐like nanoparticles to perforate artificial and natural membrane systems. As expected, MBNs achieve highly efficient drug penetration into drug‐resistant human ovarian (SKOV3/R) cancer cells. Most importantly, the well‐organized MBNs can pass through endothelial/tumor cells and spread from one cell to another one. Intravenous injection of MBNs into nude mice bearing impermeable SKOV3/R tumors suggests that the MBNs can recognize the tumor tissue after prolonged blood circulation, evoke the membrane‐breaking function for robust transvascular extravasation, and penetrate into the deep tumor tissue. This work provides the first demonstration of sophisticated molecular and supramolecular engineering of virion‐like MBNs to realize the long‐awaited cell‐and‐tissue dual‐penetration, contributing to the development of a brand‐new avenue for dealing with incurable cancers.  相似文献   

15.
Metastatic breast cancer may be resistant to chemo‐immunotherapy due to the existence of cancer stem cells (CSC). Also, the control of particle size and drug release of a drug carrier for multidrug combination is a key issue influencing the therapy effect. Here, a cocktail strategy is reported, in which chemotherapy against both bulk tumor cells and CSC and immune checkpoint blockade therapy are intergraded into one drug delivery system. The chemotherapeutic agent paclitaxel (PTX), the anti‐CSC agent thioridazine (THZ), and the PD‐1/PD‐L1 inhibitor HY19991 (HY) are all incorporated into an enzyme/pH dual‐sensitive nanoparticle with a micelle–liposome double‐layer structure. The particle size shrinks when the nanoparticle transfers from circulation to tumor tissues, favoring both pharmacokinetics and cellular uptake, meanwhile achieving sequential drug release where needed. This nano device, named PM@THL, increases the intratumoral drug concentrations in mice and exhibits significant anticancer efficacy, with tumor inhibiting rate of 93.45% and lung metastasis suppression rate of 97.64%. It also reduces the proportion of CSC and enhances the T cells infiltration in tumor tissues, and thus prolongs the survival of mice. The cocktail therapy based on the spatio‐temporally controlled nano device will be a promising strategy for treating breast cancer.  相似文献   

16.
The separate co‐encapsulation and selective controlled release of multiple encapsulants in a predetermined sequence has potentially important applications for drug delivery and tissue engineering. However, the selective controlled release of distinct contents upon one triggering event for most existing microcarriers still remains challenging. Here, novel microfluidic fabrication of compound‐droplet‐pairs‐filled hydrogel microfibers (C‐Fibers) is presented for two‐step selective controlled release under AC electric field. The parallel arranged compound droplets enable the separate co‐encapsulation of distinct contents in a single microfiber, and the release sequence is guaranteed by the discrepancy of the shell thickness or core conductivity of the encapsulated droplets. This is demonstrated by using a high‐frequency electric field to trigger the first burst release of droplets with higher conductivity or thinner shell, followed by the second release of the other droplets under low‐frequency electric field. The reported C‐Fibers provide novel multidelivery system for a wide range of applications that require controlled release of multiple ingredients in a prescribed sequence.  相似文献   

17.
Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as potential clinical tools for cancer theranostics. Membrane‐bound 70 kDa heat shock protein (mHsp70) is ubiquitously expressed on the cell membrane of various tumor types but not normal cells and therefore provides a tumor‐specific target. The serine protease granzyme B (GrB) that is produced as an effector molecule by activated T and NK cells has been shown to specifically target mHsp70 on tumor cells. Following binding to Hsp70, GrB is rapidly internalized into tumor cells. Herein, it is demonstrated that GrB functionalized SPIONs act as a contrast enhancement agent for magnetic resonance imaging and induce specific tumor cell apoptosis. Combinatorial regimens employing stereotactic radiotherapy and/or magnetic targeting are found to further enhance the therapeutic efficacy of GrB‐SPIONs in different tumor mouse models.  相似文献   

18.
Nanotechnology‐based drug delivery has a great potential to revolutionize cancer treatment by enhancing anticancer drug efficacy and reducing drug toxicity. Here, a bioinspired nano‐prodrug (BiNp) assembled by an antineoplastic peptidic derivative (FA‐KLA‐Hy‐DOX), a folate acid (FA)‐incorporated proapoptotic peptide (KLAKLAK)2 (KLA) to doxorubicin (DOX) via an acid‐labile hydrozone bond (Hy) is constructed. The hydrophobic antineoplastic agent DOX is efficiently shielded in the core of nano‐prodrug. With FA targeting moieties on the surface, the obtained BiNp shows significant tumor‐targeting ability and enhances the specific uptake of cancer cells. Upon the trigger by the intracellular acidic microenvironment of endosomes, the antineoplastic agent DOX is released on‐demand and promotes the apoptosis of cancer cells. Simultaneously, the liberated FA‐KLA can induce the dysfunction of mitochondria and evoke mitochondria‐dependent apoptosis. In vitro and in vivo results show that the nano‐prodrug BiNp with integrated programmed functions exhibits remarkable inhibition of tumor and achieves a maximized therapeutic efficiency with a minimized side effect.  相似文献   

19.
Drug resistance is the greatest challenge in clinical cancer chemotherapy. Co‐delivery of chemotherapeutic drugs and siRNA to tumor cells is a vital means to silence drug resistant genes during the course of cancer chemotherapy for an improved chemotherapeutic effect. This study aims at effective co‐delivery of siRNA and anticancer drugs to tumor cells. A ternary block copolymer PEG‐PAsp(AED)‐PDPA consisting of pH‐sensitive poly(2‐(diisopropyl amino)ethyl methacrylate) (PDPA), reduction‐sensitive poly(N‐(2,2′‐dithiobis(ethylamine)) aspartamide) PAsp(AED), and poly(ethylene glycol) (PEG) is synthesized and assembled into a core‐shell structural micelle which encapsulated doxorubicin (DOX) in its pH‐sensitive core and the siRNA‐targeting anti‐apoptosis BCL‐2 gene (BCL‐2 siRNA) in a reduction‐sensitive interlayer. At the optimized size and zeta potential, the nanocarriers loaded with DOX and BCL‐2 siRNA may effectively accumulate in the tumor site via blood circulation. Moreover, the dual stimuli‐responsive design of micellar carriers allows microenviroment‐specific rapid release of both DOX and BCL‐2 siRNA inside acidic lysosomes with enriched reducing agent, glutathione (GSH, up to 10 mm ). Consequently, the expression of anti‐apoptotic BCL‐2 protein induced by DOX treatment is significantly down‐regulated, which results in synergistically enhanced apoptosis of human ovarian cancer SKOV‐3 cells and thus dramatically inhibited tumor growth.  相似文献   

20.
The fight against human disease requires a multidisciplinary scientific approach. Applying tools from seemingly unrelated areas, such as materials science and molecular biology, researchers can overcome long‐standing challenges to improve knowledge of molecular pathologies. Here, custom‐designed substrates composed of silicon nitride (SiN) are used to study the 3D attributes of tumor suppressor proteins that function in DNA repair events. New on‐chip preparation strategies enable the isolation of native protein complexes from human cancer cells. Combined techniques of cryo‐electron microscopy (EM) and molecular modeling reveal a new modified form of the p53 tumor suppressor present in aggressive glioblastoma multiforme cancer cells. Taken together, the findings provide a radical new design for cryo‐EM substrates to evaluate the structures of disease‐related macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号