首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries.  相似文献   

3.
4.
5.
A simple and green method is developed for the preparation of nanostructured TiO2 supported on nitrogen‐doped carbon foams (NCFs) as a free‐standing and flexible electrode for lithium‐ion batteries (LIBs), in which the TiO2 with 2.5–4 times higher loading than the conventional TiO2‐based flexible electrodes acts as the active material. In addition, the NCFs act as a flexible substrate and efficient conductive networks. The nanocrystalline TiO2 with a uniform size of ≈10 nm form a mesoporous layer covering the wall of the carbon foam. When used directly as a flexible electrode in a LIB, a capacity of 188 mA h g?1 is achieved at a current density of 200 mA g?1 for a potential window of 1.0–3.0 V, and a specific capacity of 149 mA h g?1 after 100 cycles at a current density of 1000 mA g?1 is maintained. The highly conductive NCF and flexible network, the mesoporous structure and nanocrystalline size of the TiO2 phase, the firm adhesion of TiO2 over the wall of the NCFs, the small volume change in the TiO2 during the charge/discharge processes, and the high cut‐off potential contribute to the excellent capacity, rate capability, and cycling stability of the TiO2/NCFs flexible electrode.  相似文献   

6.
The designable structure with 3D structure, ultrathin 2D nanosheets, and heteroatom doping are considered as highly promising routes to improve the electrochemical performance of carbon materials as anodes for lithium‐ion batteries. However, it remains a significant challenge to efficiently integrate 3D interconnected porous frameworks with 2D tunable heteroatom‐doped ultrathin carbon layers to further boost the performance. Herein, a novel nanostructure consisting of a uniform ultrathin N‐doped carbon layer in situ coated on a 3D graphene framework (NC@GF) through solvothermal self‐assembly/polymerization and pyrolysis is reported. The NC@GF with the nanosheets thickness of 4.0 nm and N content of 4.13 at% exhibits an ultrahigh reversible capacity of 2018 mA h g?1 at 0.5 A g?1 and an ultrafast charge–discharge feature with a remarkable capacity of 340 mA h g?1 at an ultrahigh current density of 40 A g?1 and a superlong cycle life with a capacity retention of 93% after 10 000 cycles at 40 A g?1. More importantly, when coupled with LiFePO4 cathode, the fabricated lithium‐ion full cells also exhibit high capacity and excellent rate and cycling performances, highlighting the practicability of this NC@GF.  相似文献   

7.
8.
High energy density is the major demand for next‐generation rechargeable batteries, while the intrinsic low alkali metal adsorption of traditional carbon–based electrode remains the main challenge. Here, the mechanochemical route is proposed to prepare nitrogen doped γ‐graphyne (NGY) and its high capacity is demonstrated in lithium (LIBs)/sodium (SIBs) ion batteries. The sample delivers large reversible Li (1037 mAh g?1) and Na (570.4 mAh g?1) storage capacities at 100 mA g?1 and presents excellent rate capabilities (526 mAh g?1 for LIBs and 180.2 mAh g?1 for SIBs) at 5 A g?1. The superior Li/Na storage mechanisms of NGY are revealed by its 2D morphology evolution, quantitative kinetics, and theoretical calculations. The effects on the diffusion barriers (Eb) and adsorption energies (Ead) of Li/Na atoms in NGY are also studied and imine‐N is demonstrated to be the ideal doping format to enhance the Li/Na storage performance. Besides, the Li/Na adsorption routes in NGY are optimized according to the experimental and the first‐principles calculation results. This work provides a facile way to fabricate high capacity electrodes in LIBs/SIBs, which is also instructive for the design of other heteroatomic doped electrodes.  相似文献   

9.
10.
The ingenious design of a freestanding flexible electrode brings the possibility for power sources in emerging wearable electronic devices. Here, reduced graphene oxide (rGO) wraps carbon nanotubes (CNTs) and rGO tightly surrounded by MnO2 nanosheets, forming a 3D multilevel porous conductive structure via vacuum freeze‐drying. The sandwich‐like architecture possesses multiple functions as a flexible anode for lithium‐ion batteries. Micrometer‐sized pores among the continuously waved rGO layers could extraordinarily improve ion diffusion. Nano‐sized pores among the MnO2 nanosheets and CNT/rGO@MnO2 particles could provide vast accessible active sites and alleviate volume change. The tight connection between MnO2 and carbon skeleton could facilitate electron transportation and enhance structural stability. Due to the special structure, the rGO‐wrapped CNT/rGO@MnO2 porous film as an anode shows a high capacity, excellent rate performance, and superior cycling stability (1344.2 mAh g−1 over 630 cycles at 2 A g−1, 608.5 mAh g−1 over 1000 cycles at 7.5 A g−1). Furthermore, the evolutions of microstructure and chemical valence occurring inside the electrode after cycling are investigated to illuminate the structural superiority for energy storage. The excellent electrochemical performance of this freestanding flexible electrode makes it an attractive candidate for practical application in flexible energy storage.  相似文献   

11.
Bendable energy‐storage systems with high energy density are demanded for conformal electronics. Lithium‐metal batteries including lithium–sulfur and lithium–oxygen cells have much higher theoretical energy density than lithium‐ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li‐dendrite growth can be further aggravated due to bending‐induced local plastic deformation and Li‐filaments pulverization. Here, the Li‐metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r‐GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending‐tolerant r‐GO/Li‐metal anode, bendable lithium–sulfur and lithium–oxygen batteries with long cycling stability are realized. A bendable integrated solar cell–battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending‐tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems.  相似文献   

12.
13.
Ti–Nb–O binary oxide materials represent a family of promising intercalating anode materials for lithium‐ion batteries. In additional to their excellent capacities (388–402 mAh g–1), these materials show excellent safety characteristics, such as an operating potential above the lithium plating voltage and minimal volume change. Herein, this study reports a new member in the Ti–Nb–O family, Ti2Nb14O39, as an advanced anode material. Ti2Nb14O39 porous spheres (Ti2Nb14O39‐S) exhibit a defective shear ReO3 crystal structure with a large unit cell volume and a large amount of cation vacancies (0.85% vs all cation sites). These morphological and structural characteristics allow for short electron/Li+‐ion transport length and fast Li+‐ion diffusivity. Consequently, the Ti2Nb14O39‐S material delivers significant pseudocapacitive behavior and excellent electrochemical performances, including high reversible capacity (326 mAh g?1 at 0.1 C), high first‐cycle Coulombic efficiency (87.5%), safe working potential (1.67 V vs Li/Li+), outstanding rate capability (223 mAh g–1 at 40 C) and durable cycling stability (only 0.032% capacity loss per cycle over 200 cycles at 10 C). These impressive results clearly demonstrate that Ti2Nb14O39‐S can be a promising anode material for fast‐charging, high capacity, safe and stable lithium‐ion batteries.  相似文献   

14.
15.
Used as a bare active material or component in hybrids, graphene has been the subject of numerous studies in recent years. Indeed, from the first report that appeared in late July 2008, almost 1600 papers were published as of the end 2015 that investigated the properties of graphene as an anode material for lithium‐ion batteries. Although an impressive amount of data has been collected, a real advance in the field still seems to be missing. In this framework, attention is focused on the most prominent research efforts in this field with the aim of identifying the causes of such relentless progression through an insightful and critical evaluation of the lithium‐ion storage performances (i.e., 1st cycle irreversible capacity, specific gravimetric and volumetric capacities, average delithiation voltage profile, rate capability and stability upon cycling). The “graphene fever” has certainly provided a number of fundamental studies unveiling the electrochemical properties of this “wonder” material. However, analysis of the published literature also highlights a loss of focus from the final application. Hype‐driven claims, not fully appropriate metrics, and negligence of key parameters are probably some of the factors still hindering the application of graphene in commercial batteries.  相似文献   

16.
17.
Omnibearing acceleration of charge/ion transfer in Li4Ti5O12 (LTO) electrodes is of great significance to achieve advanced high‐rate anodes in lithium‐ion batteries. Here, a synergistic combination of hydrogenated LTO nanoparticles (H‐LTO) and N‐doped carbon fibers (NCFs) prepared by an electrodeposition‐atomic layer deposition method is reported. Binder‐free conductive NCFs skeletons are used as strong support for H‐LTO, in which Ti3+ is self‐doped along with oxygen vacancies in LTO lattice to realize enhanced intrinsic conductivity. Positive advantages including large surface area, boosted conductivity, and structural stability are obtained in the designed H‐LTO@NCF electrode, which is demonstrated with preeminent high‐rate capability (128 mAh g?1 at 50 C) and long cycling life up to 10 000 cycles. The full battery assembled by H‐LTO@NCFs anode and LiFePO4 cathode also exhibits outstanding electrochemical performance revealing an encouraging application prospect. This work further demonstrates the effectiveness of self‐doping of metal ions on reinforcing the high‐rate charge/discharge capability of batteries.  相似文献   

18.
Sodium ion batteries (SIBs) are considered promising alternatives to lithium ion batteries for grid‐scale and other energy storage applications because of the broad geographical distribution and low cost of sodium relative to lithium. Here, fabrication and characterization of high gravimetric and volumetric capacity 3D Ni‐supported Sb2O3 anodes for SIBs are presented. The electrodes are prepared by colloidal templating and pulsed electrodeposition followed by heat treatment. The colloidal template is optimized to provide large pore interconnects in the 3D scaffold to enable a high active materials loading and accommodate a large volume expansion during cycling. An electrodeposited loading of 1.1 g cm?3 is chosen to enable a combined high gravimetric and volumetric capacity. At this loading, the electrodes exhibit a specific capacity of ≈445 mA h g?1 and a volumetric capacity of ≈488 mA h cm?3 with a capacity retention of 89% after 200 cycles at 200 mA g?1. The stable cycling performance can be attributed to the 3D metal scaffold, which supports active materials undergoing large volume changes, and an initial heat treatment appears to improve the adhesion of the Sb2O3 to the metal scaffold.  相似文献   

19.
Lithium‐ion batteries are receiving considerable attention for large‐scale energy‐storage systems. However, to date the current cathode/anode system cannot satisfy safety, cost, and performance requirements for such applications. Here, a lithium‐ion full battery based on the combination of a Li3VO4 anode with a LiNi0.5Mn1.5O4 cathode is reported, which displays a better performance than existing systems. Carbon‐coated Li3VO4 spheres comprising nanoscale carbon‐coating primary particles are synthesized by a morphology‐inheritance route. The observed high capacity combined with excellent sample stability and high rate capability of carbon‐coated Li3VO4 spheres is superior to other insertion anode materials. A high‐performance full lithium‐ion battery is fabricated by using the carbon‐coated Li3VO4 spheres as the anode and LiNi0.5Mn1.5O4 spheres as the cathode; such a cell shows an estimated practical energy density of 205 W h kg?1 with greatly improved properties such as pronounced long‐term cyclability, and rapid charge and discharge.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号