首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cancer nanotheranostics, integrating both diagnostic and therapeutic functions into nanoscale agents, are advanced solutions for cancer management. Herein, a light‐responsive biodegradable nanorattle‐based perfluoropentane‐(PFP)‐filled mesoporous‐silica‐film‐coated gold nanorod (GNR@SiO2‐PFP) is strategically designed and prepared for enhanced ultrasound (US)/photoacoustic (PA) dual‐modality imaging guided photothermal therapy of melanoma. The as‐prepared nanorattles are composed of a thin mesoporous silica film as the shell, which endows the nanoplatform with flexible morphology and excellent biodegradability, as well as large cavity for PFP filling. Upon 808 nm laser irradiation, the loaded PFP will undergo a liquid–gas phase transition due to the heat generation from GNRs, thus generating nanobubbles followed by the coalescence into microbubbles. The conversion of nanobubbles to microbubbles can improve the intratumoral permeation and retention in nonmicrovascular tissue, as well as enhance the tumor‐targeted US imaging signals. This nanotheranostic platform exhibits excellent biocompatibility and biodegradability, distinct gas bubbling phenomenon, good US/PA imaging contrast, and remarkable photothermal efficiency. The results demonstrate that the GNR@SiO2‐PFP nanorattles hold great potential for cancer nanotheranostics.  相似文献   

3.
4.
Smart assemblies have attracted increased interest in various areas, especially in developing novel stimuli‐responsive theranostics. Herein, commercially available, natural tannic acid (TA) and iron oxide nanoparticles (Fe3O4 NPs) are utilized as models to construct smart magnetic assemblies based on polyphenol‐inspired NPs–phenolic self‐assembly between NPs and TA. Interestingly, the magnetic assemblies can be specially disassembled by adenosine triphosphate, which shows a stronger affinity to Fe3O4 NPs than that of TA and partly replaces the surface coordinated TA. The disassembly can further be facilitated by the acidic environment hence causing the remarkable change of the transverse relaxivity and potent “turn‐on” of fluorescence (FL) signals. Therefore, the assemblies for specific and sensitive tumor magnetic resonance and FL dual‐modal imaging and photothermal therapy after intravenous injection of the assemblies are successfully employed. This work not only provides understandings on the self‐assembly between NPs and polyphenols, but also will open new insights for facilely constructing versatile assemblies and extending their biomedical applications.  相似文献   

5.
Engineering of smart photoactivated nanomaterials for targeted drug delivery systems (DDS) has recently attracted considerable research interest as light enables precise and accurate controlled release of drug molecules in specific diseased cells and/or tissues in a highly spatial and temporal manner. In general, the development of appropriate light‐triggered DDS relies on processes of photolysis, photoisomerization, photo‐cross‐linking/un‐cross‐linking, and photoreduction, which are normally sensitive to ultraviolet (UV) or visible (Vis) light irradiation. Considering the issues of poor tissue penetration and high phototoxicity of these high‐energy photons of UV/Vis light, recently nanocarriers have been developed based on light‐response to low‐energy photon irradiation, in particular for the light wavelengths located in the near infrared (NIR) range. NIR light‐triggered drug release systems are normally achieved by using two‐photon absorption and photon upconversion processes. Herein, recent advances of light‐responsive nanoplatforms for controlled drug release are reviewed, covering the mechanism of light responsive small molecules and polymers, UV and Vis light responsive nanocarriers, and NIR light responsive nanocarriers. NIR‐light triggered drug delivery by two‐photon excitation and upconversion luminescence strategies is also included. In addition, the challenges and future perspectives for the development of light triggered DDS are highlighted.  相似文献   

6.
7.
8.
Multimodal imaging guided synergistic therapy promises more accurate diagnosis than any single imaging modality, and higher therapeutic efficiency than any single one or their simple “mechanical” combination. Herein, we report a dual‐stimuli responsive nanotheranostic based on a hierarchical nanoplatform, composed of mesoporous silica‐coated gold nanorods (GNR@SiO2), Indocyanine Green (ICG), and 5‐fluorouracil (5‐FU), for in vivo multimodal imaging guided synergistic therapy. The 5‐FU loaded ICG‐conjugated silica‐coated gold nanorods (GNR@SiO2‐5‐FU‐ICG) was able to response specifically to the two stimuli of pH change and near‐infrared (NIR) light irradiation. Both the NIR light irradiation and acidic environment accelerated the 5‐FU release. Meanwhile, the heat generation and singlet oxygen production can be induced by GNR@SiO2‐5‐FU‐ICG upon light irradiation. Most intriguingly, the nanoplatform also promises multimodal imaging such as two‐photon luminescence, fluorescence, photoacoustic, photothermal imaging, as well as trimodal synergistic therapy such as photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy. The cancer theranostic capability of GNR@SiO2‐5‐FU‐ICG was evaluated both in vitro and in vivo. The trimodal synergistic therapy with the guidance of multimodal imaging exhibited remarkably enhanced treatment efficacy. This concept of a hierarchical nanoplatform integrates multiple diagnostic/therapeutic modalities into one platform, which can potentially be applied as personalized nanomedicine with drug delivery, diagnosis, and treatment.  相似文献   

9.
In this work, a matrix metalloproteinase (MMP)‐triggered tumor targeted mesoporous silica nanoparticle (MSN) is designed to realize near‐infrared (NIR) photothermal‐responsive drug release and combined chemo/photothermal tumor therapy. Indocyanine green (ICG) and doxorubicin (DOX) are both loaded in the MSN modified with thermal‐cleavable gatekeeper (Azo‐CD), which can be decapped by ICG‐generated hyperthermia under NIR illumination. A peptidic sequence containing a short PEG chain, matrix metalloproteinase (MMP) substrate (PLGVR) and tumor cell targeting motif (RGD) are further decorated on the MSN via a host–guest interaction. The PEG chain can protect the MSN during the circulation and be cleaved off in the tumor tissues with overexpressed MMP, and then the RGD motif is switched on to target tumor cells. After the tumor‐triggered targeting process, the NIR irradiation guided by ICG fluorescence can trigger cytosol drug release and realize combined chemo/photothermal therapy.  相似文献   

10.
11.
12.
13.
The absence of targeted, single treatment methods produces low therapeutic value for treating cancers. To increase the accumulation of drugs in tumors and improve the treatment effectiveness, near‐infrared 808 nm photothermal responsive dual aptamers‐targeted docetaxel (DTX)‐containing nanoparticles is proposed. In this system, DTX and NH4HCO3 are loaded in thermosensitive liposomes. The surface of liposomes is coated with gold nanoshells and connected with sulfydryl (SH? ) modified AS1411 and S2.2 aptamers. The nanosystem has good biocompatibility and uniform size (diameter about 200 nm). The drug is rapidly released, reaching a maximum amount (84%) at 4 h under 808 nm laser irradiation. The experiments conducted in vitro and in vivo demonstrate the nanosystem can synergistically inhibit tumor growth by combination of chemotherapy, photothermal therapy, and biological therapy. Dual ligand functionalization significantly increases cellular uptake on breast cancer cell line (MCF‐7) cells and achieves ultrasound imaging (USI) at tumor site. The results indicate that this drug delivery system is a promising theranostic agent involving light‐thermal response at tumor sites, dual ligand targeted triplex therapy, and USI.  相似文献   

14.
15.
16.
The application of nanoparticles (NPs) to drug delivery has led to the development of novel nanotherapeutics for the treatment of various diseases including cancer. However, clinical use of NP‐mediated drug delivery has not always translated into improved survival of cancer patients, in part due to the suboptimal properties of NP platforms, such as premature drug leakage during preparation, storage, or blood circulation, lack of active targeting to tumor tissue and cells, and poor tissue penetration. Herein, an innovative reactive oxygen species (ROS)‐responsive polyprodrug is reported that can self‐assemble into stable NPs with high drug loading. This new NP platform is composed of the following key components: (i) polyprodrug inner core that can respond to ROS for triggered release of intact therapeutic molecules, (ii) polyethylene glycol (PEG) outer shell to prolong blood circulation; and (iii) surface‐encoded internalizing RGD (iRGD) to enhance tumor targeting and tissue penetration. These targeted ROS‐responsive polyprodrug NPs show significant inhibition of tumor cell growth both in vitro and in vivo.  相似文献   

17.
Upconversion nanoparticle (UCNP)‐mediated photodynamic therapy has shown great effectiveness in increasing the tissue‐penetration depth of light to combat deep‐seated tumors. However, the inevitable phototoxicity to normal tissues resulting from the lack of tumor selectivity remains as a major challenge. Here, the development of tumor‐pH‐sensitive photodynamic nanoagents (PPNs) comprised of self‐assembled photosensitizers grafted pH‐responsive polymeric ligands and UCNPs is reported. Under neutral pH conditions, photosensitizers aggregated in the PPNs are self‐quenched; however, upon entry into a tumor microenvironment with lower pH, the PPNs not only exhibit enhanced tumor‐cell internalization due to charge reversal but also are further disassembled into well‐dispersed nanoparticles in the endo/lysosomes of tumor cells, enabling the efficient activation of photosensitizers. The results demonstrate the attractive properties of both UCNP‐mediated deep‐tissue penetration of light and high therapeutic selectivity in vitro and in vivo.  相似文献   

18.
19.
Mini‐generators converting other forms of energy into electric energy are ideal power supplies for widely used microelectronic devices because they need only a low power supply in the range of µW to mW. Among various creative strategies to fabricate mini‐generators, recently developed functionally integrated systems combining self‐propulsion of small objects and the application of Faraday's law show advantages such as facile, noncontact, low resistance, and durability. However, wide application of such functionally integrated systems is currently restricted by artificial energy inputs, such as chemical fuels or mechanical work, and harvesting energy available in the environment or nature is urgently required. Herein, a light‐responsive functionally cooperating smart device is developed as a mini‐generator that can directly harvest naturally available light energy for diving–surfacing motions, thus converting mechanical energy into electricity through Faraday's law. The mini‐generator generates a maximum voltage of 1.72 V with an energy conversion efficiency of 2.44 × 10?3% to power LEDs and shows a lifetime of at least 30 000 s. By using environmental energy, the study may promote the concept of a functionally cooperating system as an economic and facile power supply for microelectronics, reducing their dependence on batteries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号