首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trophic transfer of organic pollutants with varying physical chemical properties was determined in both a pelagic and benthic food chain using delta 15N as a continuous variable for assessing trophic levels. The trophic transfer of organic pollutants through the entire food chain in terms of food chain magnification factors (FCMFs) was quantified from the slope of the regression between ln [concentration] and delta 15N. Organic pollutants with statistically significant FCMFs >1 were considered to biomagnify within the food chain, whereas those with FCMFs <1 were considered to trophically dilute. Statistically significant FCMFs >1 were found for PCB congeners and organochlorine pesticides in the Baltic food chains whereas statistically significant FCMFs <1 were found for PAHs and PCNs due to trophic dilution resulting from metabolism. FCMFs were generally greater in the pelagic food chain than in the benthic food chain. However, estimated FCMFs for the benthic food chain are likely in error, as the delta 15N method suggested a food chain structure which was not consistent with the known dietary patterns of the species. Biomagnification factors (BMFs) were additionally calculated as the ratio of the lipid normalized concentrations in the predator and prey species with adjustment for trophic level and were generally consistent with the FCMFs with BMF >1 for PCBs and organochlorines.  相似文献   

2.
Arctic fox (Alopex lagopus) and wolverine (Gulo gulo) tissues were collected in the Canadian Arctic from 1998 to 2001 and analyzed for various essential and non-essential elements. Several elements (Ag, Al, As, B, Ba, Be, Co, Cr, Mo, Ni, Sb, Sn, Sr, Tl, U and V) were near or below the detection limits in >95% arctic fox and wolverine samples. Concentrations of Cd, Cu, Fe, total Hg (THg), Mn, Pb, Se and Zn were quantifiable in >50% of the samples analyzed and reported herein. Hepatic elemental concentrations were not significantly different among arctic foxes collected at Ulukhaqtuuq (Holman), NT (n=13) and Arviat, NU (n=50), but were significantly greater than concentrations found in wolverine liver from Kugluktuk (Coppermine), NU (n=12). The mean (+/-1 S.E.) concentrations of Cd in kidney were also significantly greater in arctic fox (1.08+/-0.19 microg g(-1) wet wt.) than wolverine (0.67+/-0.18 microg g(-1) wet wt.). However, mean hepatic Cu concentrations (Ulukhaqtuuq: 5.5+/-0.64; Arviat: 7.1+/-0.49 microg g(-1) wet wt.) in arctic foxes were significantly lower than in wolverines (32+/-3.3 microg g(-1) wet wt.). Hepatic total Hg (THg) concentrations in arctic fox from this study were not significantly different from specimens collected in 1973, suggesting that THg concentrations have not changed dramatically over the past 30 years. The mono-methylmercury (MeHg) concentrations in selected (n=10) arctic fox liver samples from Arviat (0.14+/-0.07 microg g(-1) wet wt.) comprised 14% of THg. While the molar concentrations of THg were correlated with Se in arctic foxes and wolverines, the hepatic Hg/Se molar ratios were consistently lower than unity; suggesting that Se-mediated detoxification pathways of Hg are not overwhelmed at current exposure.  相似文献   

3.
Analysis of carbon (delta13C) and nitrogen (delta15N) stable isotopes provides an increasingly important means of understanding the complex trophic structure of macroinvertebrate communities in streams. We coupled a stable isotope approach with a contaminant analysis of six metals (Pb, Ag, Zn, Hg, Cu, As) to trace the accumulation and dilution of metals from an abandoned mine across trophic levels of the benthic community in Ginzan Creek, Japan. The delta15N signature increased with trophic level, with mean increases of 4.70 per thousand from producers to primary consumers and 3.06 per thousand from primary to secondary consumers. Tissue Pb and Ag concentrations were negatively correlated with delta15N, indicating biodilution of both metals through the food web. Although macroinvertebrate taxon body mass was negatively correlated with tissue metal concentration at several sites, it did not increase with trophic level (as delta15N) in any of the sites, suggesting that changes in body mass were not the cause of biodilution. Our findings suggest invertebrates at higher trophic levels may exhibit increasingly efficient excretion of metals. Autotrophic epilithon (mean delta13C= -21.3 per thousand) had a much higher concentration of mined metals than did riparian vegetation (mean delta13C= -29.3 per thousand); nonetheless, a carbon-mixing model indicated that taxa feeding on autochthonous carbon sources did not accumulate more metal than allochthonous feeders. It is likely that the notably high metal concentration of allochthonous FPOM plays an important role in the trophic transfer of metals. Our data suggest the strong potential for stable isotope analysis to enhance our understanding of metal transfer through stream macroinvertebrate food webs.  相似文献   

4.
Estimates of mercury (Hg) loadings to the Arctic Ocean from circumpolar rivers have not considered biogeochemical changes that occur when river water is temporarily stored in large deltas (delta effect). There are also few data describing Hg changes across the freshwater-saltwater transition zone (FSTZ) of these rivers. We assessed temporal changes in unfiltered total mercury (THg) and methylmercury (MeHg) concentrations during open-water 2004 in the Mackenzie River upstream of the Mackenzie River delta, and in 6 floodplain lakes across an elevation gradient. These data were used to calculate Hg fluxes from the Mackenzie River and to evaluate a delta effect on Hg using an estimate of delta river water storage and a mixing analysis. Mean THg concentrations were highest in river water (9.17 ± 5.51 ng/L) and decreased up the lake elevation gradient. Mean MeHg concentrations were highest in lakes periodically connected to the river (0.213 ± 0.122 ng/L) and MeHg concentrations in elevated lakes showed a mid-summer peak. Results from the mixing analysis showed that the delta effect may be large enough to affect Hg loadings to the Arctic Ocean. THg concentrations exiting the delta (10.2 ng/L) were 16% lower than those entering (12.1 ng/L), whereas MeHg showed little change. We calculated 2.5-month (open-water) THg and MeHg fluxes from the Mackenzie River of 1208 and 8.4 kg. These fluxes are similar in magnitude to previous annual estimates in the arctic literature suggesting that previously published annual Hg fluxes from the Mackenzie River may be large underestimates. We also assessed changes in Mackenzie River water THg and MeHg concentrations as it crossed the FSTZ during an open-water cruise. THg decreased non-conservatively across the estuary from 3.8-0.6 ng/L, possibly due to mixing and particle settling. MeHg concentrations were variable and near detection. Our results show that the Mackenzie River estuary is a dynamic environment and may have important controls on Hg delivered to the Arctic Ocean.  相似文献   

5.
The concentrations of total mercury (THg), stable isotopes of nitrogen (delta(15)N) and carbon (delta(13)C), and the diet of the African sharptooth catfish Clarias gariepinus in Lake Awassa, Ethiopia, were studied from January 2003 to February 2004. Values of the delta(15)N were used as an index of trophic position in four length groups and compared to actual stomach contents. The diet of C. gariepinus within the length range of 201-600 mm L(T) mainly consisted of the small barb Barbus paludinosus, aquatic insects, and mollusks. The proportion of fish prey in the diet was 60% by volume, irrespective of fish size. The differences in delta(15)N values of individuals within and between length classes were less than 3 per thousand, and were not significantly related to total length, showing the similarity in trophic niche of the different sizes, which corresponded to recorded stomach contents. Mercury concentrations were in the range of 0.002-0.154 mg kg(-1) ww, and had no significant relationship to total length. Hence, even large specimens of C. gariepinus have Hg values below the WHO threshold of 0.2 mg kg(-1) ww. The slope of the regression line between log [Hg] and delta(15)N was small, 0.06, indicating the absence of trophic shifts and biomagnification of Hg in larger specimens in our samples. The low Hg concentrations in C. gariepinus compared to the Hg concentrations in other piscivorous fish species in Lake Awassa, such as Barbus intermedius and B. paludinosus, may be due to its dependence on invertebrate preys at small size, diet switching towards low Hg prey fish at larger size, and growth biodilution owing to higher growth rate.  相似文献   

6.
Arctic marine ecosystem contamination.   总被引:9,自引:0,他引:9  
The current state of knowledge of levels, spatial and temporal trends of contaminants in the Arctic marine ecosystem varies greatly among pollutants and among environmental compartments. Levels of polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and some heavy metals such as mercury and lead, in Arctic marine mammals and fish are relatively well documented because of the need for comparisons with biota in more polluted environments and interest in the contamination of native diets. Levels of heavy metals, alkanes, polyaromatic hydrocarbons (PAH) and OCs in the Arctic Ocean are comparable to uncontaminated ocean waters in the mid-latitudes. But concentrations of alpha- and gamma-hexachlorocyclohexane (HCHs) are higher in northern waters far removed from local sources, possibly because lower water temperature reduces transfer to the atmosphere. Bioaccumulation of OCs and heavy metals in Arctic marine food chains begins with epontic ice algae or phytoplankton in surface waters. Polychlorinated camphenes (PCC), PCBs, DDT- and chlordane-related compounds are the major OCs in marine fish, mammals and seabirds. Mean concentrations of most PCBs and OC pesticides in ringed seal (Phoca hispida) and polar bear (Ursus maritimus) populations in the Canadian Arctic are quite similar indicating a uniform geographic distribution of contamination, although alpha-HCH showed a distinct latitudinal gradient in bears due to higher levels in zones influenced by continental runoff. Ringed seals from Spitzbergen have higher levels of PCBs, total DDT and polychlorinated dioxins/furans (PCDD/PCDFs). In contrast to other OCs, PCDD/PCDFs in Canadian Arctic ringed seals and polar bears were higher in the east/central Arctic than at more southerly locations. Remarkably high cadmium levels are found in kidney and liver of narwhal (Monodons monoceros) from western Baffin Bay (mean of 63.5 micrograms g-1) and western Greenland waters (median of 39.5 micrograms g-1). Mercury concentrations in muscle of ringed seal and cetaceans frequently exceed 0.5 microgram g-1 especially in older animals. Cadmium concentrations in polar bear liver increased from west to east, while mercury levels were higher in ringed seals from the western Canadian Arctic, which suggests that natural sources of these metals predominate. Studies of temporal trends in OCs in ringed seals and seabirds in the Canadian Arctic indicate PCB and DDT levels declined significantly from the early 1970s to the 1980s. There is a lack of temporal trend data for other OC pesticides as well as for heavy metals and hydrocarbons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Geographical variation of organochlorine pesticides (OCPs) was studied in blood samples from 90 adult female polar bear (Ursus maritimus) from Svalbard, Franz Josef Land, Kara Sea, East-Siberian Sea and Chukchi Sea. In all regions, oxychlordane was the dominant OCP. Regional differences in mean levels of HCB, oxychlordane, trans-nonachlor, alpha-HCH, beta-HCH and p,p'-DDE were found. The highest levels of oxychlordane, trans-nonachlor and DDE were found in polar bears from Franz Josef Land and Kara Sea. HCB level was lowest in polar bears from Svalbard. Polar bears from Chukchi Sea had the highest level of alpha- and beta-HCH. The lowest alpha-HCH concentration was found in bears from Kara Sea. In all the bears, summation operator HCHs was dominated by beta-HCH. The geographical variation in OCP levels and pattern may suggest regional differences in pollution sources and different feeding habits in the different regions. Polar bears from the Western Russian Arctic were exposed to higher levels of chlordanes and p,p'-DDE than polar bears from locations westwards and eastwards from this region. This may imply the presence of a significant pollution source in the Russian Arctic area. The study suggests that the western Russian Arctic is the most contaminated region of the Arctic and warrants further research.  相似文献   

8.
Two food webs from the Mar Menor coastal lagoon, differing in the distance from the desert-stream through which mining wastes were discharged, were examined by reference to essential (Zn and Cu) and non-essential (Pb and Cd) metal concentrations and stable isotopes content (C and N). The partial extraction technique applied, which reflects the availability of metals to organisms after sediment ingestion, showed higher bioavailable metal concentrations in sediments from the station influenced by the mining discharges, in agreement with the higher metal concentrations observed in organisms, which in many cases exceeded the regulatory limits established in Spanish legislation concerning seafood. Spatial differences in essential metal concentrations in the fauna suggest that several organisms are exposed to metal levels above their regulation capacity. Differences in isotopic composition were found between both food webs, the wadi-influenced station showing higher delta(15)N values and lower delta(13)C levels, due to the discharge of urban waste waters and by the entrance of freshwater and allochthonous marsh plants. The linear-regressions between trophic levels (as indicated by delta(15)N) and the metal content indicated that biomagnification does not occur. In the case of invertebrates, since the "handle strategy" of the species and the physiological requirements of the organisms, among other factors, determine the final concentration of a specific element, no clear relationships between trophic level and the metal content are to be expected. For their part, fish communities did not show clear patterns in the case of any of the analyzed metals, probably because most fish species have similar metal requirements, and because biological factors also intervened. Finally, since the study deals with metals, assumptions concerning trophic transfer factors calculation may not be suitable since the metal burden originates not only from the prey but also from adsorption over the body surfaces and seawater ingestion.  相似文献   

9.
Polar bear (Ursus maritimus) livers (67) from six Management Zones in the western and central Canadian Arctic were analysed for 22 elements. Several, Ba, Be, Co, Mo, Ti, V and Zr, were near the detection limit in all cases. Baseline data were obtained for the remaining elements, Ag, As, Ca, Cd, Cu, Fe, Hg, K, Mg, Mn, Na, P, Se, Sr and Zn. No statistically significant effect of age, sex or geographical location was found for any of the elements, except Cd, Hg and Se, for which age and geographical location effects were found. The frequency distribution of Zn levels was bimodal. The second peak in the distribution appeared to be related to elevated levels of Cu. The average level of Cu was 104 mg kg-1 (dry wt.), higher than other marine mammals. Average levels of Cd were significantly higher in the eastern zones, but were always less than 1.0 mg kg-1 (dry wt.), significantly lower than their prey species. This may be due to the preference of polar bears for eating seal skin and fat which is low in Cd. Mercury levels tended to be higher in the western zones bordering the Beaufort Sea, which may be related to a higher proportion of bearded seal in their diet. Mean Hg levels ranged from 20 mg kg-1 in the eastern zones were related to age by the expression: Hg (mg kg-1 dry wt.) = 15.7 + 8.0 Age (years). Mercury levels in the most northerly zone near Melville Island were very high: Hg (mg kg-1 dry wt.) = 18.4 + 27.5 Age (years). Levels of Hg and Se were very highly correlated, with a molar ratio of 1.27:1, Hg/Se.  相似文献   

10.
Total mercury (THg) and methylmercury (MeHg) concentrations were measured in the muscle of Arctic charr (Salvelinus alpinus) and in the water column of 4 lakes that are located in the French Alps. Watershed characteristics were determined (6 coverage classes) for each lake in order to evaluate the influence of watershed composition on mercury and methylmercury concentrations in fish muscle and in the water column. THg and MeHg concentrations in surface water were relatively low and similar among lakes and watershed characteristics play a major role in determining water column Hg and MeHg levels. THg muscle concentrations for fish with either a standardized length of 220 mm, a standardized age of 5 years or for individualuals did not exceed the 0.5 mg kg− 1 fish consumption advisory limit established for Hg by the World Health Organization (WHO, 1990). These relatively low THg concentrations can be explained by watershed characteristics, which lead to short Hg residence time in the water column, and also by the short trophic chain that is characteristic of mountain lakes. Growth rate did not seem to influence THg concentrations in fish muscles of these lakes and we observed no relationship between fish Hg concentrations and altitude. This study shows that in the French Alps, high altitude lakes have relatively low THg and MeHg concentrations in both the water column and in Arctic charr populations. Therefore, Hg does not appear to present a danger for local populations and the fishermen of these lakes.  相似文献   

11.
Elevated metal levels in fish are a concern for the fish themselves, their predators, and possibly humans who consume contaminated seafood. Metal bioaccumulation models often rely on assimilation efficiencies (AEs) of ingested metals and loss rate constants after dietary exposure (kefs). These models can be used to better understand processes regulating metal accumulation and can be used to make site-specific predictions of metal concentrations in animal tissues. Fish often consume a varied diet, and prey choice can influence these two parameters. We investigated the trophic transfer of As, Cd, Cr, Hg(II), and methylmercury (MeHg) from a benthic amphipod (Leptocheirus plumulosus) and an oligochaete (Lumbriculus variegatus) to killifish (Fundulus heteroclitus) using gamma-emitting radioisotopes. Except for MeHg, AEs varied between prey type. AEs were highest for MeHg (92%) and lowest for Cd (2.9-4.5%) and Cr (0.2-4%). Hg(II) showed the largest AE difference between prey type (14% amphipods, 24% worms). For Cd and Hg(II) kefs were higher after consuming amphipods than consuming worms. Tissue distribution data shows that Cd and Hg(II) were mainly associated with the intestine, whereas As and MeHg were transported throughout the body. Calculated trophic transfer factors (TTFs) suggest that MeHg is likely to biomagnify at this trophic step at all ingestion rates, whereas As, Cd, Cr, and Hg(II) will not. Data collected in this study and others indicate that using one prey item to calculate AE and kef could lead to an over- or underestimation of these parameters.  相似文献   

12.
The present study outlines two main trends of mercury transfer patterns through the fish community: 1) the Hg concentrations increase with increase in the trophic level, with top predators having the highest concentrations, and 2) a fast growth rate may dilute the concentrations of Hg in fish muscle tissue (growth biodilution). In 2004, an extensive reduction in number of large pike (Esox lucius L.), was initiated by selective gillnet fishing in Lake Arungen, Norway, in order to increase the pike recruitment due to an expected reduction in cannibalism. In this connection, total mercury (THg) concentrations in the fish community were studied both before (2003) and after (2005) the removal of large pike. The delta(15)N signatures and stomach content analyses indicated that pike and perch (Perca fluviatilis L.) occupied the highest trophic position, while roach (Rutilus rutilus (L.)) was at the lower level, and rudd (Scardinius erythrophthalmus L.) at the lowest. The piscivores, pike and perch, had the highest concentrations of THg. The biomagnification rate of THg through the food web in the fish community was 0.163 (per thousand delta(15)N), with the highest uptake rate (0.232) in perch. A significant decrease in THg concentrations was found in all fish species in 2005 compared to 2003. Removal of the top predators in an Hg contaminated lake might thus be an important management tool for reducing Hg levels in fish, thereby reducing health risk to humans.  相似文献   

13.
Blubber samples from ringed seal (Phoca hispida; n = 8) and polar bear subcutaneous fat (Ursus maritimus; n = 5) were collected near Barrow, Alaska in 1996 as part of the Alaska Marine Mammal Tissue Archival Project (AMMTAP) and retained in the National Biomonitoring Specimen Bank at the National Institute of Standards and Technology in Gaithersburg, Maryland (USA). The samples were analyzed for a variety of persistent organochlorine pollutants (POPs) including polychlorinated biphenyls (PCBs), hexachlorocyclohexanes (HCHs), chlordane and metabolites, hexachlorobenzene (HCB) and DDTs and metabolites. The geometric mean, on a wet mass basis, of sigmaPCBs (sum of 29 congeners and congener groups) were 732+/-282 ng/g (1 S.D.) in seals and 3395+/-1442 ng/g in polar bears. The geometric mean of sigmaDDTs, sigmaHCHs (alpha-, beta- and gamma- HCH) and HCB concentrations (wet mass basis) in seals and bears were 562+/-261 ng/g vs. 74.8+/-39 ng/g, 380+/-213 ng/g vs. 515 ng/g, and 17.4+/-10.1 ng/g vs. 183+/-153 ng/g, respectively. The geometric mean sum of chlordane (sigmachlordane, sum of cis- and trans-chlordane, cis- and trans-nonachlor, oxychlordane and heptachlor epoxide) and dieldrin concentrations in ringed seals and polar bears were 753+/-617 ng/g vs. 720+/-315 ng/g and 38.6+/-22.8 ng/g vs. 130+/-65 ng/g, respectively. Apparent bioaccumulation factors (polar bear/ringed seal POP concentrations) were lower in the animals sampled near Barrow, Alaska than in those from locations in the Canadian Arctic. This suggests that polar bears are also preying on marine mammals from lower trophic levels than the ringed seals with correspondingly lower organochlorine levels, such as bowhead whale carcasses. PCB congener patterns in the samples demonstrated the metabolism of certain PCB congeners in the polar bear relative to the ringed seal in agreement with previous studies. Regional comparisons of animals collected in Alaska and Arctic Canada are presented.  相似文献   

14.
Even at low concentrations in the environment, mercury has the potential to biomagnify in food chains and reaches levels of concern in apex predators. The aim of this study was to relate the transfer of total mercury (THg) and methylmercury (MeHg) in a Gulf of St. Lawrence food web to the trophic structure, from primary consumers to seabirds, using stable nitrogen (δ15N) and carbon (δ13C) isotope analysis and physical environmental parameters. The energy reaching upper trophic level species was principally derived from pelagic primary production, with particulate organic matter (POM) at the base of the food chain. We developed a biomagnification factor (BMF) taking into account the various prey items consumed by a given predator using stable isotope mixing models. This BMF provides a more realistic estimation than when using a single prey. Lipid content, body weight, trophic level and benthic connection explained 77.4 and 80.7% of the variation in THg and MeHg concentrations, respectively in this food web. When other values were held constant, relationships with lipid and benthic connection were negative whereas relationships with trophic level and body weight were positive. Total Hg and MeHg biomagnified in this food web with biomagnification power values (slope of the relationship with δ15N) of 0.170 and 0.235, respectively on wet weight and 0.134 and 0.201, respectively on dry weight. Values of biomagnification power were greater for pelagic and benthopelagic species compared to benthic species whereas the opposite trend was observed for levels at the base of the food chain. This suggests that Hg would be readily bioavailable to organisms at the base of the benthic food chain, but trophic transfer would be more efficient in each trophic level of pelagic and benthopelagic food chains.  相似文献   

15.
Recent studies have added substantially to our knowledge of spatial and temporal trends of persistent organic pollutants and heavy metals in the Canadian Arctic marine ecosystem. This paper reviews the current state of knowledge of contaminants in marine biota in the Canadian Arctic and where possible, discusses biological effects. The geographic coverage of information on contaminants such as persistent organochlorines (OCs) (PCBs, DDT- and chlordane-related compounds, hexachlorocyclohexanes, toxaphene) and heavy metals (mercury, selenium, cadmium, lead) in tissues of marine mammal and sea birds is relatively complete. All major beluga, ringed seal and polar bear stocks along with several major sea bird colonies have been sampled and analysed for OC and heavy metal contaminants. Studies on contaminants in walrus are limited to Foxe Basin and northern Québec stocks, while migratory harp seals have only been studied recently at one location. Contaminant measurements in bearded seal, harbour seal, bowhead whale and killer whale tissues from the Canadian Arctic are very limited or non-existent. Many of the temporal trend data for contaminants in Canadian Arctic biota are confounded by changes in analytical methodology, as well as by variability due to age/size, or to dietary and population shifts. Despite this, studies of OCs in ringed seal blubber at Holman Island and in sea birds at Prince Leopold Island in Lancaster Sound show declining concentrations of PCBs and DDT-related compounds from the 1970s to 1980s then a levelling off during the 1980s and early 1990s. For other OCs, such as chlordane, HCH and toxaphene, limited data for the 1980s to early 1990s suggests few significant declines in concentrations in marine mammals or sea birds. Temporal trend studies of heavy metals in ringed seals and beluga found higher mean concentrations of mercury in more recent (1993/1994) samples than in earlier collections (1981–1984 in eastern Arctic, 1972–1973 in western Arctic) for both species. Rates of accumulation of mercury are also higher in present day animals than 10–20 years ago. Cadmium concentrations in the same animals (eastern Arctic only) showed no change over a 10-year period. No temporal trend data are available for metals in sea birds or polar bears. There have been major advances in knowledge of specific biomarkers in Canadian Arctic biota over the past few years. The species with the most significant risk of exposure to PCBs and OC pesticides may be the polar bear which, based on comparison with EROD activity in other marine mammals (beluga, ringed seal), appears to have elevated CYP1A-mediated activity. The MFO enzyme data for polar bear, beluga and seals suggest that even the relatively low levels of contaminants present in Arctic animals may not be without biological effects, especially during years of poor feeding.  相似文献   

16.
Adult long-tailed ducks (Clangula hyemalis) were collected from nine locations across their breeding grounds in northern Canada and measurements of stable isotopes of carbon (delta(13)C), nitrogen (delta(15)N) and sulfur (delta(34)S) in bone collagen were used to investigate if relative use of freshwater habitats such as the Great Lakes (with expected depleted stable isotope profiles) compared with coastal marine environments (with expected enriched stable isotope foodweb profiles) could explain tissue trace element profiles. Contrary to expectation, all three stable isotopes did not covary in our sample, suggesting that mechanisms other than simple freshwater vs. marine isotopic gradients were involved among populations. All three stable isotopes varied significantly with collection location and both delta(15)N and delta(13)C values varied significantly between sexes suggesting that males exploit either a different food base or occur in different geographic areas than females for at least part of the year. The delta(34)S data, in particular, suggested that many of the birds breeding in the western Canadian Arctic probably overwinter in the Great Lakes along with many of the birds breeding in Hudson Bay. Males at the majority of collection locations had higher concentrations of hepatic Hg (1.1-8 microg/g dw), Cu (25-40 mug/g dw), Se (7.3-27 mug/g dw) and renal Cd (33-129 microg/g dw) than females. Concentrations of Hg, Cu and Cd were well below toxicological threshold levels found in the literature. However, hepatic Se concentrations in 64% of the females exceeded 10 mug/g dw and concentrations in 8% of the birds measured exceeded 33 microg/g dw suggesting levels of potential concern.  相似文献   

17.
Knowledge of contaminant levels in Greenland biota has increased substantially in recent years, particularly for persistent organic pollutants. This paper reviews and updates knowledge of spatial and temporal trends of Cd, Hg and organochlorines (PCBs, DDTs, HCHs, HCB and chlordane-related compounds) in Greenland terrestrial, freshwater and marine biota. The most comprehensive studies of spatial trends of Cd and Hg in the terrestrial ecosystem concern lichens, with relatively complete coverage, and caribou (Rangifer tarandus), with coverage mainly in different regions of central West Greenland and Southwest Greenland. The Arctic char (Salvelinus alpinus) is the only freshwater organism for which studies of spatial trends of Hg levels have been completed. Information on spatial trends of Cd and Hg in the marine environment is available from studies of fish, seabirds, ringed seals (Phoca hispida) and polar bears (Ursus maritimus). Geographical patterns of Cd and Hg in Greenland biota were not always consistent among different species or different studies. In landlocked Arctic char the concentrations of Hg decreased from south to north. In marine animals levels of Hg tended to be higher in East Greenland than in West Greenland and Cd levels were highest in biota from Disko Island in central West Greenland. The observed regional differences are difficult to explain but in most cases the causes appear to be natural rather than anthropogenic. Only a few time series covering the last 20 years exist for Cd and Hg. The one time series indicating a temporal change is for ringed seals in Northwest Greenland, which shows an increasing trend of Hg and a decreasing trend of Cd since 1984. Whether the changes reflect anthropogenic inputs, seal behaviour or other environmental factors is unknown. The most significant new insights have concerned organochlorines. In general, levels of these compounds were very low in terrestrial biota compared to marine species. Concentrations in landlocked Arctic char were highest in Southeast Greenland and lowest in Northwest and Northeast Greenland. Marine species from East Greenland had consistently higher levels of SigmaPCB, SigmaDDT and SigmaHCH than marine species from West Greenland. Very few data exist to evaluate temporal changes of organochlorine levels in Greenland biota, and this is the most significant knowledge gap at present. The most pronounced change observed was a decrease of 78% in SigmaPCB levels in polar bears from East Greenland from 1990 to 2000. Levels of SigmaHCH in shorthorn sculpins (Myoxocephalus scorpius) and seals from both central West Greenland and central East Greenland appear to have decreased since 1994. Increasing trends of SigmaDDT from 1994 until now were found in both sexes of seals as well as in male sculpins from central West Greenland.  相似文献   

18.
Monitoring of environmental contaminants in Canadian Arctic polar bears (Ursus maritimus) typically has used superficial adipose tissue samples collected as part of controlled native subsistence hunts. However, little attention has been paid to the compositional difference in contaminants that may exist among the major adipose depots that are routinely collected. To address this knowledge gap, we investigated the profiles and concentrations of chlorinated hydrocarbon contaminants (CHCs), including major polychlorinated biphenyl (PCB) congeners and organochlorine (OC) pesticides and metabolites, in six major adipose depots (i.e. superficial, inter-muscular and intra-abdominal regions) obtained from adult male polar bears in the vicinity of Resolute Bay, Canadian high Arctic. Concentrations and congener patterns of PCBs (20 congeners) and OCs (14 compounds; chlordanes and dichlorodiphenyltrichloroethanes and metabolites, chlorinated benzenes, hexachlorocyclohexane isomers, octachlorostyrene and dieldrin) were found to be relatively uniform throughout the adipose tissue of male polar bears. The only exception was the inter-muscular adipose depot from the cervical region, which was characterized, compared to other major depots routinely sampled, by lower proportions of higher-chlorinated and recalcitrant congeners such as CB170/190, 180, 194 and 206, and higher contribution of the lower-chlorinated PCBs, CB47, 74 and 99. No difference in the OC makeup and concentrations was found among the adipose depots investigated. In view of this, we conclude that the determination of CHCs in adipose tissue of polar bears from any major depots, with the potential exception of the fat under the neck muscles, would give a representative picture of the overall CHC composition and concentrations in polar bear fat for purpose of trend monitoring.  相似文献   

19.
The presence of mercury in the river Idrijca (Slovenia) is mainly due to 500 years of mercury mining in this region. In order to understand the cycling of mercury in the Idrijca ecosystem it is crucial to investigate the role of biota. This study is part of an ongoing investigation of mercury biogeochemistry in the river Idrijca, focusing on the accumulation and speciation of mercury in the lower levels of the food chain, namely filamentous algae, periphyton and macroinvertebrates. Mercury analysis and speciation in the biota and in water were performed during the spring, summer and autumn seasons at four locations on the river, representing different degrees of mercury contamination. Total (THg) and methyl mercury (MeHg) were measured. The results showed that the highest THg concentrations in biota correlate well with THg levels in sediments and water. The level of MeHg is spatially and seasonally variable, showing higher values at the most contaminated sites during the summer and autumn periods. The percentage of Hg as MeHg increases with the trophic level from water (0.1-0.8%), algae (0.5-1.3%), periphyton (1.6-8.8%) to macroinvertebrates (0.1-100%), which indicates active transformation, accumulation and magnification of mercury in the benthic organism of this heavily contaminated torrential river.  相似文献   

20.
Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely based on correlations between biomarker endpoints (e.g., biochemical processes related to the immune and endocrine system, pathological changes in tissues and reproduction and development) and tissue residue levels of OHCs (e.g., PCBs, DDTs, CHLs, PBDEs and in a few cases perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonates (PFSAs)). Some exceptions include semi-field studies on comparative contaminant effects of control and exposed cohorts of captive Greenland sled dogs, and performance studies mimicking environmentally relevant PCB concentrations in Arctic charr. Recent tissue concentrations in several arctic marine mammal species and populations exceed a general threshold level of concern of 1 part-per-million (ppm), but a clear evidence of a POP/OHC-related stress in these populations remains to be confirmed. There remains minimal evidence that OHCs are having widespread effects on the health of Arctic organisms, with the possible exception of East Greenland and Svalbard polar bears and Svalbard glaucous gulls. However, the true (if any real) effects of POPs in Arctic wildlife have to be put into the context of other environmental, ecological and physiological stressors (both anthropogenic and natural) that render an overall complex picture. For instance, seasonal changes in food intake and corresponding cycles of fattening and emaciation seen in Arctic animals can modify contaminant tissue distribution and toxicokinetics (contaminant deposition, metabolism and depuration). Also, other factors, including impact of climate change (seasonal ice and temperature changes, and connection to food web changes, nutrition, etc. in exposed biota), disease, species invasion and the connection to disease resistance will impact toxicant exposure. Overall, further research and better understanding of POP/OHC impact on animal performance in Arctic biota are recommended. Regardless, it could be argued that Arctic wildlife and fish at the highest potential risk of POP/OHC exposure and mediated effects are East Greenland, Svalbard and (West and South) Hudson Bay polar bears, Alaskan and Northern Norway killer whales, several species of gulls and other seabirds from the Svalbard area, Northern Norway, East Greenland, the Kara Sea and/or the Canadian central high Arctic, East Greenland ringed seal and a few populations of Arctic charr and Greenland shark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号