首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对90℃热水型余热,以R123为工质,对应用于有机朗肯循环(ORC)系统的径流式汽轮机的喷嘴进行一维稳定流动分析,以单位质量热源水的发电量(比净功)最大为目标函数,开展ORC变工况实验研究。研究表明:R123的临界压力比为0.59~0.67,随工质压力的增大有小幅上升,实验系统需采用缩放喷嘴。系统比净功受换热性能,汽轮机效率,传动-发电效率以及系统总功率等多种因素的综合影响。实验中变蒸发压力最优工况为:蒸发压力0.46 MPa,比净功0.40 kJ/kg;变冷凝压力最优工况为:冷凝压力0.11 MPa,系统比净功0.76 kJ/kg。  相似文献   

2.
以低温烟气余热驱动的内回热有机朗肯(organic Rankine cycles,ORC)系统为例,分析系统净输出功、透平膨胀比、热效率、热回收率、损失、效率以及比净功等热力性能评价指标随蒸发温度和过热度的变化规律,确定系统最佳工质及最优蒸发温度和过热度。提出用预热系数、潜热系数、过热系数与内回热系数解释系统热效率随工质临界温度变化的原因。研究结果表明:随蒸发温度升高,系统净输出功先增大后减小,热回收率和总损减小,透平膨胀比、热效率和效率增大。适当过热对于ORC系统十分重要,不仅能降低透平膨胀比,提高系统运行稳定性,还可减小系统总损,提高系统效率,增大工质比净功。经对比发现,丁烷为适合该文所选热源的最佳工质,在蒸发温度为100℃、过热度为5℃工况下能取得最佳热力性能。  相似文献   

3.
以某车用柴油机排气余热为研究对象,建立有机朗肯循环(ORC)余热回收系统热力学模型,分析主要设计参数包括对ORC余热回收系统性能有影响的蒸发压力、冷凝压力、蒸发器出口工质过热度、冷凝器出口工质过冷度等,通过自编程序计算研究了工质流量、系统热效率等系统性能参数的变化规律。研究结果表明:提高系统的蒸发压力,降低冷凝压力有利于提高系统的性能;对于R123工质,过热度增加对系统的性能影响不大,而对于乙醇工质,过热度增加有利于系统效率提高;冷凝器出口工质过冷度的增加给循环性能带来不利影响。  相似文献   

4.
文中针对辽河油田稠油采出液余热特性和R134a有机工质应用EES软件对影响有机工质郎肯循环性能的系统参数进行了数值计算分析,通过同一工质循环参数对系统的影响分析来看,各参数对系统的影响程度不一,其中以蒸发温度对净输出电功的影响最大,在余热流体温度、汽轮机背压一定的情况下,系统存在一个"最佳蒸发温度"使得净输出电功达到最大,且"最佳蒸发温度"随余热流体温度、汽轮机背压的增加而增加。  相似文献   

5.
为了实现低温热能的充分回收利用,在混合工质ORC循环发电基础上,提出一种利用CO_2跨临界循环与其耦合的发电系统。基于热力学第一、第二定律,建立相应热力学模型,并编写计算程序,确定系统运行条件,分析蒸发温度T1、跨临界蒸发压力p01及热源温度T_g等参数变化对耦合系统性能的影响,并将其与采用相同混合工质的ORC系统进行比较。结果表明:随蒸发温度提高,跨临界循环部分输出功逐渐增加,而ORC部分由于冷凝温度提升所减少的输出功逐渐降低。在T_g为373.00K时,若T_1为340.00、354.00K,耦合系统较基本ORC系统输出功分别增加15.77、113.53kW。随跨临界蒸发压力p_(01)变化,耦合系统输出功及效率均有先减小后增加再降低的规律,存在一最佳跨临界压力,且表现为随热源温度降低,耦合系统性能优越性逐渐明显。若T_g为373.00或403.00K,则耦合系统较基本ORC系统分别增加19.16、7.18kW。在蒸发温度较高或热源温度较低时,采用耦合系统具有重要意义。  相似文献   

6.
为了提高尾气余热利用率并削弱热源波动对有机朗肯循环的影响,提出了一种集成相变储热换热器的有机朗肯循环(organic Rankine cycle,ORC)系统,利用相变材料削弱尾气余热波动并储存热量。搭建了内燃机尾气余热直接驱动的储热式有机朗肯循环试验台架,开展了内燃机稳态工况和阶跃变工况下储热式有机朗肯循环的热力学性能和动态性能试验研究。结果表明,内燃机稳态工况下尾气平均温度和平均流量为342℃和0.142kg/s,蒸发压力为0.75MPa条件下储热式ORC系统平均输出功率约3.43kW,平均热效率可达到12.7%,平均尾气余热回收率可达40.1%。内燃机阶跃工况下,工质出口温度、蒸发压力和过热度均呈现快速下降的趋势。试验结果还表明储热式ORC具备完全抵御发动机工况小幅波动的能力。在发动机工况阶跃变化比例过大时,储热换热器可以实现对尾气的补热,从而延长储热式ORC的安全工作时间。  相似文献   

7.
针对再压缩式超临界二氧化碳布雷顿发电循环(S-CO_2),将有机朗肯循环(ORC)作为底循环用于回收系统余热,建立了S-CO_2/ORC联合循环。采用Aspen Plus建立分析模型,根据顶循环余热温度范围和安全环保要求,选取R245fa作为ORC系统工质,分析透平进口温度、透平进口压力及分流比对循环效率的影响,并通过分析耗能设备的功率变化找到影响系统效率变化的因素。结果表明:通过顶循环低温余热的回收利用,系统热效率提高4%以上;增大透平进口温度可提高顶循环的热效率,但对底循环热效率的影响较小;随着顶循环透平进口压力的增大,顶循环热效率增加而底循环热效率下降;在透平入口温度680℃、入口压力280 MPa的条件下,存在最优的再压缩循环分流比0.66使得联合循环热效率最高;使用ORC底循环回收顶循环余热,最高可以将系统热效率从50.3%提高到53.7%,联合系统可以获得6.7%的效率提升。  相似文献   

8.
结合超临界二氧化碳物性分析、工质在主设备工作过程,讨论了主设备中工质的基本状态。根据燃机余热烟气特点,建立了余热利用的超临界二氧化碳循环发电计算程序,分析了简单循环、再压缩循环、复合简单循环、复合再压缩-简单循环4种循环布置下的系统稳态参数、效率以及净输出功。研究表明:透平入口工质压力越高,透平出口工质的温度越低,工质携带热量的利用越充分;压缩机入口温度应尽量接近临界点(31.1℃)、压力需稍高于临界点(7.4 MPa),可保证压缩机出口温度较低、工作状态稳定、单位工质流量的功耗小。随热源最低温度的下降,系统所获得净功以及实际效率均能得到一定的提升,通过叠加方式实现的烟气分级利用可以显著提高燃机余热利用的超临界二氧化碳循环系统效率和净功。  相似文献   

9.
朱霄珣  李鹏  韩中合 《太阳能学报》2018,39(11):3039-3048
为充分回收低温烟气余热,建立带有内回热的有机朗肯循环系统。选取硅氧烷类、HC类与HFC类共9种有机工质,基于工质临界温度与工质复杂度因子,讨论净输出功与质量流量变化规律;提出采用液态吸热系数、潜热系数、内回热吸热系数对ORC系统循环热效率的变化规律进行分析。结果表明:随蒸发温度的升高,热效率与效率升高,质量流量与损下降,而净输出功先升高后降低。对同种类型工质,临界温度越高,净输出功越低;对不同类型工质,单位工质做功能力表现为HC类硅氧烷HFC类,且对于不同类型工质影响工质质量流量的因素不同。对不同工质而言,工质临界温度越高,热效率与效率越大,净输出功越小,热源匹配性变差。综合考虑以上因素,所选工质临界温度不宜超出热源温度过多。  相似文献   

10.
工质的特性是影响ORC(有机朗肯循环)系统性能的重要因素之一。建立了65~100℃低温地热水有机朗肯循环发电系统数学模型,将R245fa分别与R601a和R227ea以不同比例混合作为ORC系统的工质,比较了非共沸混合物和纯物质两类工质对ORC系统循环净功、热效率和火用效率的影响。研究结果表明:无论是纯工质还是非共沸工质,系统的循环净功、热效率和火用效率都随着热源温度的升高而增大。工质在相变过程中是否存在温度滑移,是影响ORC系统性能的重要因素之一。在65~100℃的热源条件下,综合考虑3个评价指标,当R245fa配比为0.1~0.7时,R245fa/R601a混合物的循环净功、热效率和火用效率分别提升0.012~2.48 k W、0.005%~1.15%和0.08%~10.7%;当R245fa配比为0.5~0.9时,R245fa/R227ea混合物的循环净功、热效率和火用效率分别提升0.049~4.25 k W、0.057%~1.75%和0.21%~16.1%。  相似文献   

11.
以R141b/R245fa混合工质为研究对象,利用Matlab软件建立混合工质双压有机朗肯循环(ORC)系统数学模型,分析混合工质组分、高压蒸发温度、低压蒸发温度对系统热力、经济、环境性能的影响。采用多目标麻雀搜索(MOSSA)算法对系统热力、经济、环境性能进行多目标优化,并对3种性能的函数关系进行拟合。结果表明:系统热效率与R141b质量分数呈负相关,随高压蒸发温度呈先增大后减小趋势,存在最佳高压蒸发温度使系统热效率达到最大,与低压循环蒸发温度呈正相关;混合工质双压ORC热经济环境三目标优化的Pareto最优解(ηorc,LEC,ECE)为(0.134 3,0.701 9元/kWh,11.605 kgCO2eq/kWh),综合性能最优时的运行参数为R245fa质量分数为0.1,高压循环蒸发温度为387.65 K,低压循环蒸发温度为357.83 K,窄点温差为5.02 K,提高系统热力性能和环境性能必然会降低其经济性能。  相似文献   

12.
为研究有机朗肯循环(ORC)热源温度变化引起的循环热效率、(火用)效率、发电效率等性能的变化情况,搭建以R245fa为循环工质的ORC发电系统实验平台。实验结果表明:热源温度的提高使循环蒸发压力、冷凝压力升高,膨胀机入口温度、压力升高,膨胀比增大,等熵效率提升,膨胀做功能力增强,系统循环热效率、(火用)效率、发电效率均增大;在冷源温度为12℃,工质流量保持恒定的情况下,热源温度从87.5℃上升至108.1℃时,循环热效率由4.1%提升到7.1%,系统(火用)效率由17.2%提升到30.0%,系统发电效率由4.1%提升到7.3%。  相似文献   

13.
为充分回收矿藏热采过程尾端低温蒸汽余热,提出一种适于蒸汽回收的新型闪蒸-双工质联合循环发电系统,以热力学第一、第二定律为基础,建立了该联合循环热力模型,采用R245fa为循环工质,编制计算程序对系统热效率、输出功率及火用效率进行了热力分析,并将其与单纯闪蒸、双工质朗肯循环进行性能对比。结果表明,在热源温度110℃、压力0.14 MPa情况下,净输出功随闪蒸压力、双工质循环蒸发压力的增大均呈先增大后减小的趋势,当闪蒸压力在0.048 33 MPa,低压级双工质循环蒸发压力为0.389 6 MPa时,系统整体及闪蒸-双工质阶段均存在最大功率,分别为6 249.2 kW、429.2 kW;热效率则随闪蒸压力增大先增大后减小,而随双工质压力的增大不断增大。其中双工质循环的热效率均低于联合循环,在多数情况下单纯闪蒸循环的热效率基本等于联合循环的热效率;火用效率变化规律与净输出功变化规律相同。  相似文献   

14.
常规有机朗肯循环(ORC)中透平效率多假设为定值,而实际上透平效率因工质种类和运行参数的不同而有较大差异。因此,采用向心透平效率计算模型,将动态透平效率与ORC系统耦合,分析透平效率随蒸发温度与冷凝温度的变化规律,比较固定透平效率与动态透平效率ORC系统热效率的差异。综合考虑热力性与经济性,采用多目标优化算法,对固定透平效率与动态透平效率ORC系统进行工质筛选及参数优化,并对优化结果进行分析比较。结果表明:透平效率随蒸发温度的下降或者冷凝温度升高而增大;不同工质及不同蒸发冷凝温度条件下,透平效率差异较大,最大达0.148。固定透平效率ORC系统与动态透平效率ORC系统的热效率随蒸发温度的变化规律有较大差异,尤其在高蒸发温度区间更为明显。对于固定透平效率ORC系统,R245ca和R236ea为最佳工质;而对于动态透平效率ORC系统,R114为最佳工质。在引入动态透平效率前后,各工质的最佳蒸发温度与最佳冷凝温度也有较大变化。  相似文献   

15.
为了利用丰富的中低温余热进行制冷,本文提出了一种结合ORC(有机朗肯循环)和VCR(蒸汽压缩制冷循环)的制冷系统,并对新系统进行了热力学分析和火用损失分析。此外,对比分析了Cyclohexane、D4、n-octane及R141b四种工质的热力学性能与ORC蒸发温度、制冷剂蒸发温度及透平效率等参数对系统制冷性能的影响。结果表明:以Cyclohexane为ORC工质时,系统总制冷COP(性能系数)最高为1.262;ORC蒸发温度对制冷工质与有机工质的质量流量比有显著的影响;制冷剂蒸发温度对系统的制冷COP有显著的影响;制冷剂冷凝温度对系统制冷COP的影响比ORC冷凝温度大;ORC蒸发器、VCR冷凝器以及ORC冷凝器的火用损失占系统总火用损失的57.28%。  相似文献   

16.
分别以净发电效率和系统火甩效率最大为目标,通过热力学分析,确定了两种不同余热类型发电系统候选工质的选择原则:热流量恒定余热应选择临界温度较高的工质,初温和质量流量恒定的余热应选择临界温度较低的工质.并定义了相应余热类型最佳工质主要评价参数α和β,数值大的工质性能较优.以两级烟气余热发电系统为倒,采用Aspen Plus软件模拟计算验证理论分析结论.结果表明,第一级系统不同工质净功、参数α和火用损失随蒸发温度变化的趋势与理论分析结果完全吻合;第二级系统不同工质的净功、参数β和火用效率随蒸发温度变化趋势与理论分析结果也完全吻合.这表明,本研究提出的工质优选原则和方法是正确、可行的.  相似文献   

17.
余热利用有机物朗肯循环最佳热回收效率分析   总被引:1,自引:0,他引:1  
首先通过分析余热回收动力循环的不可逆损失,得到循环的理想效率。其次,通过分析发现热回收效率随蒸发压力变化存在最佳值,并且最佳热回收效率与最小熵增率是等价的。然后,通过研究两种简化的余热利用动力模型,应用有限时间热力学的相关方法,指出最大热回收效率产生的原因。再次,研究了余热变化时系统最佳工况的变化。结果发现最佳蒸发压力随余热流量、入口温度增加而显著增加,而与余热组分关系不大。最后,研究了工质对系统最佳工况的影响,发现较高临界温度的工质,最佳蒸发压力较低。  相似文献   

18.
利用Aspen Plus建立计算模型,分析运行参数及系统布置形式对有机朗肯循环性能的影响,并以净输出功率和系统所需的总换热面积的比值作为经济性指标分析其经济性。结果表明:蒸发温度、蒸发压力和有机工质流量对有机朗肯循环的净输出功率均有一定的影响,其中改变有机工质流量影响最大,蒸发温度次之;综合考虑经济性和净输出功率,柴油机全负荷下系统在蒸发温度160℃、蒸发压力2.5MPa、有机工质流18kg/s时性能最优。工质流量影响最大且易控制,在不同柴油机运行工况下只需改变有机工质流量就可适应负荷变化,负荷越大回收的能量越多,其净输出功率均占柴油机主机功率的8%左右。添加内回热器使系统热效率提高2.65%,效率提高4.5%,再增加一个低温循环,净输出功率可增加94.90kW。  相似文献   

19.
分析了蒸发器换热过程中热源温度对窄点温差位置的影响,讨论了冷凝温度和热源温度对有机朗肯循环(ORC)系统的影响。随着热源温度的升高,蒸发器窄点温差位置由有机工质蒸发温度处转移到蒸发器有机工质入口温度处。考虑冷却水循环,系统存在最佳冷凝温度,当冷凝温度低于最佳冷凝温度时,净功输出随冷凝温度的降低而急剧下降。给定工况下,最佳冷凝温度随热源温度的增长近似线性升高,热源温度每升高1℃,最佳冷凝温度增长0.035~0.045℃;净功输出随热源温度的升高而增加,上升速度存在转折点,转折发生在热源温度为160~270℃时。  相似文献   

20.
为了充分提高低品位能源利用过程中的回收利用率,降低热源排放温度,本研究提出一种基于热源分流的新型梯级换热、梯级发电的有机朗肯循环系统。系统以地热水为热源,分析了在给定热源工况时,蒸发温度对系统性能的影响以及在不同热源工况下,采用R123、R245fa及R152a3种工质互相组合时,系统性能的变化规律。结果表明,梯级ORC(有机朗肯循环)存在最佳蒸发温度,且其性能优于单级ORC循环,在T_g=373 K时,其输出功增加59.12 k W。随热源工况变化,两级循环中最佳工质分别变化,若两级循环均在亚临界区工作,则一级循环工质临界温度越低、二级循环工质临界温度越高系统性能越好;若两级循环中存在近临界运行工况,则应选择可使系统在近临界下运行工质。根据不同运行工况,合理选择最佳工质,对提高该梯级换热ORC系统性能具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号